首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With an increasing population living at a high altitude (HA), the impact of HA residence on human cognitive function has raised concerns. We recruited two groups of college students with one group born and grew up at HA until early adulthood and the control group born and grew up at near sea level (SL); the two groups were matched at age, gender ratio, educational level, the ancestral lines, and peripheral physiology (especially the hemoglobin concentration). A 2-back spatial working memory task was performed by each subject in the scanner while fMRI data were acquired. Compared to the SL control group, the HA group showed equal response accuracy, with more variance in reaction time and a larger average value. fMRI data indicated that both groups showed common activation patterns in the neural pathway typically associated with working memory. The HA group had greater activation at the left pyramis, the left superior temporal gyrus and less activation at the left middle occipital gyrus. Significant correlations were found within each group between the reaction times and BOLD signal change amplitudes at the frontal cortex and the precentral cortex.  相似文献   

2.
The present study characterizes the neural correlates of noun and verb imageability and addresses the question of whether components of the neural network supporting word recognition can be separately modified by variations in grammatical class and imageability. We examined the effect of imageability on BOLD signal during single-word comprehension of nouns and verbs. Subjects made semantic similarity judgments while undergoing functional magnetic resonance imaging (fMRI). Nouns and verbs were matched on imageability, and imageability varied continuously within a grammatical category. We observed three anatomically separable effects: a main effect of grammatical class, a main effect of imageability, and an imageability by grammatical class cross-over interaction. The left superior parietal lobule and a region in the left fusiform responded similarly to increases in noun and verb imageability; the left superior temporal gyrus showed greater activity for verbs than nouns after imageability was matched across grammatical class; and, in both the left middle temporal gyrus and the left inferior frontal lobe, a decrease in noun but not verb imageability resulted in higher BOLD signal. The presence of reliable and anatomically separable main effects of both imageability and grammatical class renders unlikely the hypothesis that previously reported dissociations between nouns and verbs can be dismissed as imageability effects. However, some regions previously thought to respond to grammatical class or imageability instead respond to the interaction of these variables.  相似文献   

3.
The perirhinal and entorhinal cortices are critical components of the medial temporal lobe (MTL) declarative memory system. Study of their specific functions using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI), however, has suffered from severe magnetic susceptibility signal dropout resulting in poor temporal signal-to-noise (tSNR) and thus weak BOLD signal detectability. We have demonstrated that higher spatial resolution in the z-plane leads to improved BOLD fMRI signal quality in the anterior medial temporal lobes when using a 16-element surface coil array at 3 T (Tesla). Using this technique, the present study investigated the roles of the anterior medial temporal lobe, particularly the entorhinal and perirhinal cortices, in both object and spatial memory. Participants viewed a series of fractal images and were instructed to encode either the object's identity or location. Object and spatial recognition memory were tested after 18-sec delays. Both the perirhinal and entorhinal cortices were active during the object and spatial encoding tasks. In both regions, object encoding was biased to the left hemisphere, whereas spatial encoding was biased to the right. A similar hemispheric bias was evident for recognition memory. Recent animal studies suggest functional dissociations among regions of the entorhinal cortex for spatial vs. object processing. Our findings suggest that this process-specific distinction may be expressed in the human brain as a hemispheric division of labor.  相似文献   

4.
Previous functional magnetic resonance imaging (fMRI) studies have identified activation in the prefrontal-parietal-sub-cortical circuit during feigned memory impairment when comparing with truthful telling. Here, we used fMRI to determine whether neural activity can differentiate between answering correctly, answering randomly, answering incorrectly, and feigned memory impairment. In this study, 12 healthy subjects underwent block-design fMRI while they performed digit task of forced-choice format under four conditions: answering correctly, answering randomly, answering incorrectly, and simulated feigned memory impairment. There were three main results. First, six areas, including the left prefrontal cortex, the left superior temporal lobe, the right postcentral gyrus, the right superior parietal cortex, the right superior occipital cortex, and the right putamen, were significantly modulated by condition type. Second, for some areas, including the right superior parietal cortex, the right postcentral gyrus, the right superior occipital cortex, and the right putamen, brain activity was significantly greater in feigned memory impairment than answering randomly. Third, for the areas including the left prefrontal cortex and the right putamen, brain activity was significantly greater in feigned memory impairment than answering incorrectly. In contrast, for the left superior temporal lobe, brain activity was significantly greater in answering incorrectly than feigned memory impairment. The results suggest that neural correlates of feigned memory impairment are distinguishable from answering randomly and answering incorrectly in healthy subjects.  相似文献   

5.
One problem of interpreting research on subconscious processing is the possibility that participants are weakly conscious of the stimuli. Here, we compared the fMRI BOLD response in healthy adults to clearly visible single letters (supraliminal presentation) with the response to letters presented in the absence of any behavioural evidence of visibility (subliminal presentation). No letter catch trials served as a control condition. Forced-choice responses did not differ from chance when letter-to-background contrast was low, whereas they were almost 100% correct when contrast was high. A comparison of fMRI BOLD signals for supraliminal and subliminal letters with the control trials revealed a signal increase in left BA 37 (fusiform gyrus). Comparison of supraliminal with subliminal letters showed a significant increase in the right inferior frontal gyrus (BA 44, partly extending to BA 9 and BA 45, as well as BA 46). Finally, a comparison of subliminal with supraliminal letters showed increases in the left middle temporal gyrus (BA 21) and the right extrastriate cortex (BA 19).  相似文献   

6.
Neural activity associated with self-referential processing of emotional stimuli was investigated using whole brain functional magnetic resonance imaging (fMRI). Fifteen healthy subjects underwent fMRI scanning while making judgments about positive and negative trait words in four conditions (self-reference, other-reference, semantic processing, and letter processing). Significant activity was observed in the right ventral anterior cingulate gyrus and the right amygdala in the negative-word/self-reference condition, and in the left amygdala in the positive-word/self-reference condition. Compared with the semantic-processing condition, the self-reference conditions showed significantly more activity in the medial prefrontal and temporal gyri, posterior cingulate gyrus, and precuneus. These results suggest that the medial prefrontal gyrus, posterior cingulate gyrus, and precuneus are associated with a self-referential processing, and the ventral anterior cingulate gyrus is involved in self-referential processing of negative emotional stimuli. The results also suggest that the amygdala is associated with self-referential processing of both positive and negative emotional stimuli.  相似文献   

7.
Spaced learning with time to consolidate leads to more stabile memory traces. However, little is known about the neural correlates of trace stabilization, especially in humans. The present fMRI study contrasted retrieval activity of two well-learned sets of face-location associations, one learned in a massed style and tested on the day of learning (i.e., labile condition) and another learned in a spaced scheme over the course of one week (i.e., stabilized condition). Both sets of associations were retrieved equally well, but the retrieval of stabilized association was faster and accompanied by large-scale changes in the network supporting retrieval. Cued recall of stabilized as compared with labile associations was accompanied by increased activity in the precuneus, the ventromedial prefrontal cortex, the bilateral temporal pole, and left temporo–parietal junction. Conversely, memory representational areas such as the fusiform gyrus for faces and the posterior parietal cortex for locations did not change their activity with stabilization. The changes in activation in the precuneus, which also showed increased connectivity with the fusiform area, are likely to be related to the spatial nature of our task. The activation increase in the ventromedial prefrontal cortex, on the other hand, might reflect a general function in stabilized memory retrieval. This area might succeed the hippocampus in linking distributed neocortical representations.  相似文献   

8.
Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects of episodic memory in the context of a spatial navigation paradigm. Subjects played a taxi-driver game ("yellowcab"), in which they freely searched for passengers and delivered them to specific landmark stores. Subjects then underwent fMRI scanning as they retrieved landmarks, spatial, and temporal associations from their navigational experience in three separate runs. Consistent with previous findings on item memory, perirhinal cortex activated most strongly during landmark retrieval compared with spatial or temporal source information retrieval. Both hippocampus and parahippocampal cortex activated significantly during retrieval of landmarks, spatial associations, and temporal order. We found, however, a significant dissociation between hippocampal and parahippocampal cortex activations, with spatial retrieval leading to greater parahippocampal activation compared with hippocampus and temporal order retrieval leading to greater hippocampal activation compared with parahippocampal cortex. Our results, coupled with previous findings, demonstrate that the hippocampus and parahippocampal cortex are preferentially recruited during temporal order and spatial association retrieval--key components of episodic "source" memory.  相似文献   

9.
Position emission tomography was used to investigate whether retrieval of perceptual knowledge from long-term memory activates unique cortical regions associated with the modality and/or attribute type retrieved. Knowledge about the typical color, size, and sound of common objects and animals was probed, in response to written words naming the objects. Relative to a nonsemantic control task, all the attribute judgments activated similar left temporal and frontal regions. Visual (color, size) knowledge selectively activated the right posterior inferior temporal (PIT) cortex, whereas sound judgments elicited selective activation in the left posterior superior temporal gyrus and the adjacent parietal cortex. All of the attribute judgments activated a left PIT region, but color retrieval generated more activation in this area. Size judgments activated the right medial parietal cortex. These results indicate that the retrieval of perceptual semantic information activates not only a general semantic network, but also cortical areas specialized for the modality and attribute type of the knowledge retrieved.  相似文献   

10.
Aging effects on memory encoding in the frontal lobes   总被引:5,自引:0,他引:5  
Functional magnetic resonance imaging (fMRI) was used to compare frontal-lobe activation in younger and older adults during encoding of words into memory. Participants made semantic or nonsemantic judgments about words. Younger adults exhibited greater activation for semantic relative to nonsemantic judgments in several regions, with the largest activation in the left inferior frontal gyrus. Older adults exhibited greater activation for semantic judgments in the same regions. but the extent of activation was reduced in left prefrontal regions. In older adults, there was a significant association between behavioral tests of declarative and working memory and extent of frontal activation. These results suggest that age-associated decreases in memory ability may be due to decreased frontal-lobe contributions to the initial encoding of experience.  相似文献   

11.
Functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments were conducted in the same group of subjects and with an identical task paradigm to investigate a possible relationship between hemodynamic and electrophysiological responses within the brain. The subjects were instructed to judge whether visually presented stimuli were faces or houses and then press the corresponding button. Functional MRI identified face- and house-related regions in the lateral and medial part of the fusiform gyrus, respectively, while ERP showed significantly greater N170 negativity for face than for house stimuli in the temporo-occipital electrodes. Correlation analysis between the BOLD signal in the fusiform gyrus and ERP parameters demonstrated a close relationship between the signal and both latency and amplitude of N170 across the subjects. These correlations may indicate that the variation in cognitive demand and hemodynamic responses during the face/house discrimination task is coupled with the variation of N170 peak latency/amplitude across the subjects. Thus, integrative analysis of spatial and temporal information obtained from the two experimental modalities may help in studying neural correlates involved in a particular cognitive task.  相似文献   

12.
A variety of visual mental imagery tasks have been shown to activate regions of visual cortex that subserve the perception of visual events. Here fMRI was used to examine whether imagery‐related visuocortical activity is modulated if imagery content is held constant but there is a change in the memory retrieval strategy used to invoke imagery. Participants were scanned while visualising common objects in two different conditions: (a) recalling recently encoded pictures and (b) based on their knowledge of concrete nouns. Results showed that retrieval‐related activations in frontal cortex were bilateral when pictures were visualised but left‐lateralised when nouns were visualised. In posterior brain regions, both imagery conditions led to activation in the same set of circumscribed areas in left temporal‐parietal cortex, including a region of the left fusiform gyrus that has previously been implicated in visual imagery. These findings suggest that the posterior network activated during imagery did not vary with strategic task‐related changes in the frontal network used to retrieve imagery content from memory.  相似文献   

13.
In this event-related fMRI study, brain activity patterns were compared in extensive groups of young (N=25) and older (N=38) adults, while they were performing a word stem completion priming task. Based on behavioral findings, we tested the hypothesis that aging affects only the lexical/semantic, but not the perceptual component of word stem priming. To this end, we distinguished between priming-related activity reductions in posterior regions involved in visual processing, and regions associated with lexical/semantic retrieval processes, i.e., left lateral temporal and left prefrontal regions. Both groups revealed significant priming-related response time reductions. However, in accordance with earlier findings, a larger priming effect was found in the group of young participants. In line with previous imaging studies, the groups showed common priming-related activity reductions in the anterior cingulate, and the left inferior prefrontal cortex extending into the anterior portion of the left superior temporal gyrus, and at lower thresholds also in the right occipital lobe. However, when directly comparing the groups, greater priming-related reductions were found for the young group in the left anterior superior temporal gyrus and the right posterior occipital lobe. These findings suggest that, converse to current psychological views, aging affects both perceptual and lexical/semantic components of repetition priming.  相似文献   

14.
This article investigates the potential of fMRI to test assumptions about different components in models of complex cognitive tasks. If the components of a model can be associated with specific brain regions, one can make predictions for the temporal course of the BOLD response in these regions. An event-locked procedure is described for dealing with temporal variability and bringing model runs and individual data trials into alignment. Statistical methods for testing the model are described that deal with the scan-to-scan correlations in the errors of measurement of the BOLD signal. This approach is illustrated using a "sacrificial" ACT-R model that involves mapping 6 modules onto 6 brain regions in an experiment from Ravizza, Anderson, and Carter (in press) concerned with equation solving. The model's visual encoding predicted the BOLD response in the fusiform gyrus, its controlled retrieval predicted the BOLD response in the lateral inferior prefrontal cortex, and its subgoal setting predicted the BOLD response in the anterior cingulate cortex. On the other hand, its motor programming failed to predict anticipatory activation in the motor cortex, its representational changes failed to predicted the pattern of activity in the posterior parietal cortex, and its procedural component failed to predict an initial spike in caudate. The results illustrate the power of such data to direct the development of a theory of complex problem solving, both at the level of a specific task model as well as at the level of the cognitive architecture.  相似文献   

15.
Measures of electrical brain activity (event-related potentials, ERPs) have been useful in understanding language processing for several decades. Extant data suggest that the amplitude of the N400 component of the ERP is a general index of the ease or difficulty of retrieving stored conceptual knowledge associated with a word, which is dependent on both the stored representation itself, and the retrieval cues provided by the preceding context. Recordings from patients with brain damage, intracranial recordings, and magnetoencephalographic data implicate a (probably large portion of) the left temporal lobe as the largest source of the N400 semantic context effect, with a substantial but lesser contribution from the right temporal lobe. Event-related functional magnetic resonance (fMRI) studies using semantic context manipulations are dominated by observations of greater hemodynamic activity for incongruent sentence completions or semantically unrelated words than congruent or related words, consistent with the direction of the ERP effect. The locations of the hemodynamic effects show some variability across studies, but one commonly identified region is the left superior temporal gyrus, which is compatible with the electrophysiological results. A second commonly identified region in the fMRI studies is the left inferior frontal gyrus, which does not appear to make a substantial contribution to the N400 effect.  相似文献   

16.
Polyphonic music combines multiple auditory streams to create complex auditory scenes, thus providing a tool for investigating the neural mechanisms that orient attention in natural auditory contexts. Across two fMRI experiments, we varied stimuli and task demands in order to identify the cortical areas that are activated during attentive listening to real music. In individual experiments and in a conjunction analysis of the two experiments, we found bilateral blood oxygen level dependent (BOLD) signal increases in temporal (the superior temporal gyrus), parietal (the intraparietal sulcus), and frontal (the precentral sulcus, the inferior frontal sulcus and gyrus, and the frontal operculum) areas during selective and global listening, as compared with passive rest without musical stimulation. Direct comparisons of the listening conditions showed significant differences between attending to single timbres (instruments) and attending across multiple instruments, although the patterns that were observed depended on the relative demands of the tasks being compared. The overall pattern of BOLD signal increases indicated that attentive listening to music recruits neural circuits underlying multiple forms of working memory, attention, semantic processing, target detection, and motor imagery. Thus, attentive listening to music appears to be enabled by areas that serve general functions, rather than by music-specific cortical modules.  相似文献   

17.
The present study attempts to locate brain regions that are related to vividness control, a hypothesized mechanism that reduces the vividness of negative imagery by controlling memory retrieval and emotion processing. The results showed that BOLD response in the left posterior cingulate gyrus in the negative imagery condition, in which activation of vividness control mechanisms was considered to be strong, was greater than that in the positive imagery condition, in which the activation of control mechanisms was considered to be weak. Moreover, the activation of this region negatively correlated with the subjective vividness of negative imagery. These results support the idea that the posterior cingulate gyrus may be involved in the suppression of imagery generation. Several previous studies have suggested that the posterior cingulate cortex is involved in both memory and emotion processing. Therefore, the current results indicate that the posterior cingulate gyrus may function as the vividness control mechanism.  相似文献   

18.
In the present study, we used fMRI to assess patients suffering from post-traumatic stress disorder (PTSD) or depression, and trauma-exposed controls, during an episodic memory retrieval task that included non-trauma-related emotional information. In the study phase of the task neutral pictures were presented in emotional or neutral contexts. Participants were scanned during the test phase, when they were presented with old and new neutral images in a yes/no recognition memory task. fMRI results for the contrast between old and new items revealed activation in a predominantly left-sided network of cortical regions including the left middle temporal, bilateral posterior cingulate, and left prefrontal cortices. Activity common to all three groups when correctly judging pictures encoded in emotional contexts was much more limited. Relative to the control and depressed groups the PTSD group exhibited greater sensitivity to correctly recognised stimuli in the left amygdala/ventral striatum and right occipital cortex, and more specific sensitivity to items encoded in emotional contexts in the right precuneus, left superior frontal gyrus, and bilateral insula. These results are consistent with a substantially intact neural system supporting episodic retrieval in patients suffering from PTSD. Moreover, there was little indication that PTSD is associated with a marked change in the way negatively valenced information, not of personal significance, is processed.  相似文献   

19.
Accumulating evidence from electrophysiology and neuroimaging studies suggests that spatial working memory is subserved by a network of frontal and parietal regions. In the present study, we parametrically varied the memory set size (one to four spatial locations) of a delayed-response task and applied time-resolved fMRI to study the influence of memory load upon the spatial working memory circuit. Our behavioral results showed that performance deteriorates (lower accuracy and longer reaction time) as memory load increases. Memory load influenced cortical activity during the cue, delay, and response phases of the delayed-response task. Although delay-related activity in many regions increased with increasing memory load, it also was significantly reduced in the middle frontal gyrus and frontal eye fields and leveled off in the parietal areas when memory load increased further. Delayrelated activity in the left posterior parietal cortex was also lower during the error trials, in comparison with the correct trials. Our findings indicate that the delay period activity in the spatial working memory circuit is load sensitive and that the attenuation of this signal is the neural manifestation of performance limitation in the face of excessive memory load.  相似文献   

20.
Age-related neural differences in affiliation and isolation   总被引:1,自引:0,他引:1  
While previous aging studies have focused on particular components of social perception (e.g., theory of mind, self-referencing), little is known about age-related differences specifically for the neural basis of perception of affiliation and isolation. This study investigates age-related similarities and differences in the neural basis of affiliation and isolation. Participants viewed images of affiliation (groups engaged in social interaction) and isolation (lone individuals), as well as nonsocial stimuli (e.g., landscapes), while making pleasantness judgments and undergoing functional neuroimaging (BOLD fMRI). Results indicated age-related similarities in response to affiliation and isolation in recruitment of regions involved in theory of mind and self-referencing (e.g., temporal pole, medial prefrontal cortex). Yet age-related differences also emerged in response to affiliation and isolation in regions implicated in the theory of mind, as well as self-referencing. Specifically, in response to isolation versus affiliation images, older adults showed greater recruitment than did younger adults of the temporal pole, a region that is important for retrieval of personally relevant memories utilized to understand others' mental states. Furthermore, in response to images of affiliation versus isolation, older adults showed greater recruitment than did younger adults of the precuneus, a region implicated in self-referencing. We suggest that age-related divergence in neural activation patterns underlying judgments of scenes depicting isolation versus affiliation may indicate that older adults' theory of mind processes are driven by retrieval of isolation-relevant information. Moreover, older adults' greater recruitment of the precuneus for affiliation versus isolation suggests that the positivity bias for emotional information may extend to social information involving affiliation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号