首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four perceptual identification experiments examined the influence of spatial cues on the recognition of words presented in central vision (with fixation on either the first or last letter of the target word) and in peripheral vision (displaced left or right of a central fixation point). Stimulus location had a strong effect on word identification accuracy in both central and peripheral vision, showing a strong right visual field superiority that did not depend on eccentricity. Valid spatial cues improved word identification for peripherally presented targets but were largely ineffective for centrally presented targets. Effects of spatial cuing interacted with visual field effects in Experiment 1, with valid cues reducing the right visual field superiority for peripherally located targets, but this interaction was shown to depend on the type of neutral cue. These results provide further support for the role of attentional factors in visual field asymmetries obtained with targets in peripheral vision but not with centrally presented targets.  相似文献   

2.
The processing advantage for words in the right visual field (RVF) has often been assigned to parallel orthographic analysis by the left hemisphere and sequential by the right. The authors investigated this notion using the Reicher-Wheeler task to suppress influences of guesswork and an eye-tracker to ensure central fixation. RVF advantages obtained for all serial positions and identical U-shaped serial-position curves obtained for both visual fields (Experiments 1-4). These findings were not influenced by lexical constraint (Experiment 2) and were obtained with masked and nonmasked displays (Experiment 3). Moreover, words and nonwords produced similar serial-position effects in each field, but only RVF stimuli produced a word-nonword effect (Experiment 4). These findings support the notion that left-hemisphere function underlies the RVF advantage but not the notion that each hemisphere uses a different mode of orthographic analysis.  相似文献   

3.
In Experiment 1 a same-different comparison task involving simultaneous discrimination of colors differing by 2.5 steps in hue and presented 2° in the left or right visual field was given to 24 male and 24 female familial righthanders. A significant left visual field superiority was obtained. In a color naming task, the higher the number of color pairs for which both members were given the same name, the larger the left visual field superiority. In Experiment 2 the tasks were replicated with a 10-sec memory interval inserted between the stimuli in each color pair. No significant effects were obtained.  相似文献   

4.
Words with an early or late orthographic uniqueness point and nonwords with an early or late orthographic deviation point were presented to the left, right, or both visual fields simultaneously. In Experiment 1, 20 participants made lexical decision judgements to horizontal stimulus presentations. In Experiment 2, a further 20 participants completed the task using vertical presentations to control for attentional biases. Consistent with previous research, words with earlier orthographic uniqueness points prompted faster responses across visual fields, regardless of stimulus orientation. Although research has suggested that the left hemisphere's superiority for language processing stems from a comparatively parallel processing strategy, with the right hemisphere reliant upon a serial mechanism, left and right visual field presentations were not differentially affected by orthographic uniqueness point. This suggests that differential sequential effects previously reported result during processes other than retrieval from the lexicon. The overall right visual field advantage observed using horizontal presentations disappeared when stimuli were presented vertically. Contrary to expectations, there was a facilitatory effect of late orthographic deviation point for horizontal nonword presentations. Overall, the results were interpreted as being consistent with predictions of a cohort model of word recognition, and they highlighted the effect of stimulus orientation on left and right hemisphere word recognition.  相似文献   

5.
Hemisphere differences in conscious and unconscious word reading   总被引:1,自引:0,他引:1  
Hemisphere differences in word reading were examined using explicit and implicit processing measures. In an inclusion task, which indexes both conscious (explicit) and unconscious (implicit) word reading processes, participants were briefly presented with a word in either the right or the left visual field and were asked to use this word to complete a three-letter word stem. In an exclusion task, which estimates unconscious word reading, participants completed the word stem with any word other than the prime word. Experiment 1 showed that words presented to either visual field were processed in very similar ways in both tasks, with the exception that words in the right visual field (left hemisphere) were more readily accessible for conscious report. Experiment 2 indicated that unconsciously processed words are shared between the hemispheres, as similar results were obtained when either the same or the opposite visual field received the word stem. Experiment 3 demonstrated that this sharing between hemispheres is cortically mediated by testing a split-brain patient. These results suggest that the left hemisphere advantage for word reading holds only for explicit measures; unconscious word reading is much more balanced between the hemispheres.  相似文献   

6.
Word fragment completion performance was examined for items that were presented in the same or different letter case at study and test. During the study phase words and nonwords were presented at central fixation, then during the test phase a divided visual field technique was used in which word fragments were presented briefly to the right hemisphere (left visual field) or the left hemisphere (right visual field). Previous research using the word stem completion task indicated that only the right hemisphere was sensitive to case changes in words from study to test. In contrast, the current results indicate that in the fragment completion task the priming effects for the test items presented to either hemisphere were greater when the fragments were in the same compared to different letter case at study and test. These results indicate that both hemispheres are capable of supporting form-specific visual implicit memory.  相似文献   

7.
Three experiments measured order of processing for single faces presented to the left or right visual field (VF) using a same-different matching task. In contrast to earlier studies, the stimuli in the present experiments were carefully matched for overall similarity prior to the actual experiments. Experiments 1 and 2 showed that a significant top-to-bottom order of processing occurred for line drawings of unfamiliar faces but not for line drawings of familiar faces. Experiment 3 found evidence supporting top-to-bottom processing for unfamiliar photographic face stimuli. The photographic stimuli in Experiment 3 were matched more quickly when presented in the left VF (right hemisphere); however, this VF asymmetry was not related to previously reported differences in order of processing. It is suggested that under some conditions faces presented to the right hemisphere may be processed more like familiar faces than faces presented to the left hemisphere; however, this difference is not critical for the left VF (right hemisphere) superiority often found in face recognition tasks.  相似文献   

8.
A fundamental concern when using visual presentations to study cerebral asymmetry is to ensure that stimuli are presented with the same degree of retinal eccentricity from a central fixation point in either visual field. However, a widely used procedure intended to control fixation location merely instructs participants to fixate appropriately without any other means of ensuring that central fixations actually occur. We assessed the validity of assuming that instructions alone ensure central fixation by using the traditional R VF advantage for words and either (a) only instructions to fixate centrally, or (b) an eye-tracking device that ensured central fixation on every trial. Experiments 1 and 2 found that when only instructions were given, the vast majority of fixations were not central, and more occurred to the right of centre than to the left. Moreover, the prevalence of non-central fixations was otherwise disguised by the finding that both fixation procedures produced similar R VF advantages in overt performance. The impact of typical non-central fixations on performance was revealed by systematically manipulating fixation location in Experiment 3, where deviations in fixation of only 0.25 from centre had a reliable impact on visual field effects. Implications of these findings for studies of cerebral asymmetry are discussed.  相似文献   

9.
In three experiments, subjects’ eye movements were recorded as they read from a computer-controlled CRT. The amount of information available to the left and right of the fixation point was varied in order to determine the characteristics of the effective visual field in reading. Experiments 1 and 2 demonstrated that readers do not obtain useful information during a fixation more than 3 or 4 letters to the left of their fixation point. The results of Experiment 3 indicated that the effective visual field does not extend any further to the left than the beginning of the word currently fixated, independent of the number of letters available to the left of fixation. When combined with the results of other research on the perceptual span in reading, the results of these experiments indicate that the effective visual field extends from the beginning of the currently fixated word (but no further than 4 characters to the left of fixation) up to about 15 characters to the right of fixation.  相似文献   

10.
Two letter classification experiments examine the hypothesis that lateral asymmetries in perceptual processing are sensitive to subtle changes in task demands. The first experiment reports a right visual field superiority for an easy letter classification, but a left field superiority for a difficult classification using the same population of stimuli. Experiment II demonstrates that the right field superiority can be reversed if the easy classification trials are embedded among more difficult trials. The implications of these results for theories of hemispheric localization are discussed.  相似文献   

11.
Participants report briefly-presented words more accurately when two copies are presented, one in the left visual field (LVF) and another in the right visual field (RVF), than when only a single copy is presented. This effect is known as the 'redundant bilateral advantage' and has been interpreted as evidence for interhemispheric cooperation. We investigated the redundant bilateral advantage in dyslexic adults and matched controls as a means of assessing communication between the hemispheres in dyslexia. Consistent with previous research, normal adult readers in Experiment 1 showed significantly higher accuracy on a word report task when identical word stimuli were presented bilaterally, compared to unilateral RVF or LVF presentation. Dyslexics, however, did not show the bilateral advantage. In Experiment 2, words were presented above fixation, below fixation or in both positions. In this experiment both dyslexics and controls benefited from the redundant presentation. Experiment 3 combined whole words in one visual field with word fragments in the other visual field (the initial and final letters separated by spaces). Controls showed a bilateral advantage but dyslexics did not. In Experiments 1 and 3, the dyslexics showed significantly lower accuracy for LVF trials than controls, but the groups did not differ for RVF trials. The findings suggest that dyslexics have a problem of interhemispheric integration and not a general problem of processing two lexical inputs simultaneously.  相似文献   

12.
Three experiments were conducted to investigate the locus of attentional control under the information-overload conditions stemming from tachistoscopic presentation of a horizontally arranged row of letters. In Experiment 1, left-right visual field accuracy differences were greater in a whole- than in a single-report task, reflecting a pronounced influence of report order bias effects. However, accuracy in the single-report task, which is relatively unaffected by report order biases, also declined from left to right across stimulus positions. In Experiment 2, single-report task requirements which provided an opportunity for rehearsal had negligible effects on the shape of the stimulus-position function. In Experiment 3, the leftright accuracy differences were observed to vary as a function of cue delay interval in a single-report visuospatial probe task. The degree of left-field superiority was negligible with a short delay interval, and much greater with longer delay intervals. The results are discussed in terms of a cognitive scanning operation.  相似文献   

13.
The cerebral hemispheres have been proposed to engage different word recognition strategies: the left hemisphere implementing a parallel, and the right hemisphere, a sequential, analysis. To investigate this notion, we asked participants to name words with an early or late orthographic uniqueness point (OUP), presented horizontally to their left (LVF), right (RVF), or both fields of vision (BVF). Consistent with past foveal research, Experiment 1 produced a robust facilitatory effect of early OUP for RVF/BVF presentations, indicating the presence of sequential processes in lexical retrieval. The effect was absent for LVF trials, which we argue results from the disadvantaged position of initial letters of words presented in the LVF. To test this proposition, Experiment 2 assessed the discriminability of various letter positions in the visual fields using a bar-probe task. The obtained error functions highlighted the poor discriminability of initial letters in the LVF and latter letters in the RVF. To confirm that this asymmetry in initial letter acuity was responsible for the absent OUP effect for LVF presentations, Experiment 3 replicated Experiment 1 using vertical stimulus presentations. Results indicated a marked facilitatory effect of early OUP across visual fields, supporting our contention that the lack of OUP effect for LVF presentations in Experiment 1 resulted from poor discriminability of the initial letters. These findings confirm the presence of sequential processes in both left and right hemisphere word recognition, casting doubt on parallel models of word processing.  相似文献   

14.
Bilateral presentation in the visual half-field greatly increases superiority of the right visual half-field in tachistoscopic recognition of words when fixation is controlled using a center digit. Two experiments explored left-right asymmetry with bilateral presentation on a visual half-field short-term memory task, with fixation controlled by a sequence of letters at fixation. A total of 40 subjects served in the two experiments, which compared recall under unilateral versus bilateral presentation to the visual half-field. Bilateral presentation increased over-all recall from the last serial position but did not alter asymmetry of the visual half-field. As in previous experiments, the superiority of the right visual half-field was greatest from the initial serial positions. It was concluded that asymmetry of the visual half-field on this recall task with controlled fixation depends primarily on masking and short-term memory but is independent of unilateral-bilateral presentation.  相似文献   

15.
Evidence for scanning with unilateral visual presentation of letters   总被引:1,自引:1,他引:0  
When letters and words are presented tachistoscopically, material from the right visual field (RVF) can be reported more accurately than that from the left visual field (LVF). The RVF superiority may reflect either left hemispheric dominance for language or directional scanning. Previous studies have deliberately focused on the cerebral asymmetry factor while "controlling" scanning and, thus, have cast some doubt on the potency of the scanning factor. Two experiments were conducted to show that scanning can induce a RVF superiority comparable to that often associated with cerebral asymmetry. The first experiment required bilingual subjects to report six English or six Hebrew letters, shown briefly in either the LVF or RVF, with order of report controlled. A RVF superiority found with English characters was matched by an equal but opposite LVF effect with Hebrew. In a second experiment, five English characters were shown briefly in either the LVF or RVF, and subjects had to identify a single character indicated by a post exposural cue. Using a spatial cue to by pass scanning, there were no field differences; with an ordinal position cue--a procedure thought to force scanning--there was a strong RVF superiority. The results show clearly that scanning can induce visual field differences.  相似文献   

16.
Hemispheric predominance has been well documented in the visual perception of alphabetic words. However, the hemispheric processing of lexical information in Chinese character recognition and its relationship to reading performance are far from clear. In the divided visual field paradigm, participants were required to judge the orthography, phonology, or semantics of Chinese characters, which were presented randomly in the left or right visual field. The results showed a right visual field/left hemispheric superiority in the phonological judgment task, but no hemispheric advantage in the orthographic or semantic task was found. In addition, reaction times in the right visual field for phonological and semantic tasks were significantly correlated with the reading test score. These results suggest that both hemispheres involved in the orthographic and semantic processing of Chinese characters, and that the left lateralized phonological processing is important for Chinese fluent reading.  相似文献   

17.
Two hypotheses of hemispheric specialization are discussed. The first stresses the importance of the kind of processing to which the stimulus is subjected, and the second stresses the importance of the nature of the stimulus. To test these hypotheses, four experiments were carried out. In Experiment 1 verbal material was employed in a same-different classification task, and an overall right visual field superiority was found. Experiment 2, in which verbal stimuli were subjected to visuospatial transformations (i.e. mental rotations), yielded no laterality effect. In Experiment 3 geometrical figures were employed in a classification task similar to that of Experiment 1, and an overall left visual field superiority was found. In Experiment 4 both verbal and geometric stimuli were employed. The results showed a significant interaction between field of presentation and nature of the stimulus and no interaction between field of presentation and level of processing.  相似文献   

18.
Hemispheric specialization for processing different types of rapidly exposed stimuli was examined in a forced choice reaction time task. Four conditions of recognition were included: tacial emotion, neutral faces, emotional words, and neutral words. Only the facial emotion condition produced a significant visual field advantage (in favor of the left visual field), but this condition did not differ significantly from the neutral face condition's left visual field superiority. The verbal conditions produced significantly decreased latencies with RVF presentation, while the LVF presentation was associated with decreased latencies on the facial conditions. These results suggested that facial recognition and affective processing cannot be separated as independent factors generating right hemisphere superiority for facial emotion perception, and that task parameters (verbal vs. nonverbal) are important influences upon effects in studies of cerebral specialization.  相似文献   

19.
This study proposed and verified a new hypothesis on the relationship between gaze direction and visual attention: attentional bias by default gaze direction based on eye-head coordination. We conducted a target identification task in which visual stimuli appeared briefly to the left and right of a fixation cross. In Experiment 1, the direction of the participant’s head (aligned with the body) was manipulated to the left, front, or right relative to a central fixation point. In Experiment 2, head direction was manipulated to the left, front, or right relative to the body direction. This manipulation was based on results showing that bias of eye position distribution was highly correlated with head direction. In both experiments, accuracy was greater when the target appeared at a position where the eyes would potentially be directed. Consequently, eye–head coordination influences visual attention. That is, attention can be automatically biased toward the location where the eyes tend to be directed.  相似文献   

20.
The split fovea theory proposes that visual word recognition of centrally presented words is mediated by the splitting of the foveal image, with letters to the left of fixation being projected to the right hemisphere (RH) and letters to the right of fixation being projected to the left hemisphere (LH). Two lexical decision experiments aimed to elucidate word recognition processes under the split fovea theory are described. The first experiment showed that when words were presented centrally, such that the initial letters were in the left visual field (LVF/RH), there were effects of orthographic neighborhood, i.e., there were faster responses to words with high rather than low orthographic neighborhoods for the initial letters ('lead neighbors'). This effect was limited to lead-neighbors but not end-neighbors (orthographic neighbors sharing the same final letters). When the same words were fully presented in the LVF/RH or right visual field (RVF/LH, Experiment 2), there was no effect of orthographic neighborhood size. We argue that the lack of an effect in Experiment 2 was due to exposure to all of the letters of the words, the words being matched for overall orthographic neighborhood count and the sub-parts no longer having a unique effect. We concluded that the orthographic activation found in Experiment 1 occurred because the initial letters of centrally presented words were projected to the RH. The results support the split fovea theory, where the RH has primacy in representing lead neighbors of a written word.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号