首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study aimed to investigate whether an interference task might impact the sleep-dependent consolidation process of a mentally learned sequence of movements. Thirty-two participants were subjected to a first training session through motor imagery (MI) or physical practice (PP) of a finger sequence learning task. After 2 h, half of the participants were requested to perform a second interfering PP task (reversed finger sequence). All participants were finally re-tested following a night of sleep on the first finger sequence. The main findings revealed delayed performance gains following a night of sleep in the MI group, i.e. the interfering task did not alter the consolidation process, by contrast to the PP group. These results confirm that MI practice might result in less retroactive interference than PP, and further highlight the relevance of the first night of sleep for the consolidation process following MI practice. These data might thus contribute to determine in greater details the practical implications of mental training in motor learning and rehabilitation.  相似文献   

2.
In monkeys and rats, neural activity patterns during learning are reactivated during subsequent periods of rest or sleep. According to the reactivation–consolidation account, this process underlies the consolidation of memories. Brain imaging studies have extended these findings to humans during sleep, but not yet, during rest. Here, we show that learning-related reactivation also occurs in humans during rest. During functional MRI-scanning, participants trained on a perceptuomotor task flanked by rest periods. During training, we found robust activity in the superior parietal cortex. During post-training rest, this same area reactivated. We also found a link between parietal reactivation and learning. Activity in superior parietal cortex was associated with learning during training, and a control group that did not train on the perceptuomotor task did not show any difference between the pre- and post-training rest blocks in this region. These findings indicate that, during rest, reactivation also occurs in humans. This process may contribute to consolidation of perceptuomotor memories.  相似文献   

3.
In striking contrast to adults, in children sleep following training a motor task did not induce the expected (offline) gain in motor skill performance in previous studies. Children normally perform at distinctly lower levels than adults. Moreover, evidence in adults suggests that sleep dependent offline gains in skill essentially depend on the pre-sleep level of performance. Against this background, we asked whether improving children's performance on a motor sequence learning task by extended training to levels approaching those of adults would enable sleep-associated gains in motor skill in this age group also. Children (4-6 years) and adults (18-35 years) performed on the motor sequence learning task (button-box task) before and after ~2-hour retention intervals including either sleep (midday nap) or wakefulness. Whereas one group of children and adults, respectively, received the standard amount of 10 blocks of training before retention intervals of sleep or wakefulness, a further group of children received an extended training on 30 blocks (distributed across 3 days). A further group of adults received a restricted training on only two blocks before the retention intervals. Children after standard training reached lowest performance levels, whereas in adults performance after standard training was highest. Children with extended training and adults after reduced training reached intermediate performance levels. Only at these intermediate performance levels did sleep induce significant gains in motor sequence skill, whereas performance did not benefit from sleep in the low-performing children or in the high-performing adults. Spindle counts in the post-training nap were correlated with performance gains at retrieval only in the adults benefitting from sleep. We conclude that, across age groups, sleep induces the most robust gain in motor skill at an intermediate pre-sleep performance level. In low-performing children sleep-dependent improvements in skill may be revealed only after enhancing the pre-sleep performance level by extended training.  相似文献   

4.
Many studies in animals and humans suggest that sleep facilitates learning, memory consolidation, and retrieval. Moreover, sleep deprivation (SD) incurred after learning, impaired memory in humans, mice, rats, and hamsters. We investigated the importance of sleep and its timing in an object recognition task in OF1 mice subjected to 6h SD either immediately after the acquisition phase (0-6 SD) or 6h later (7-12 SD), and in corresponding undisturbed controls. Motor activity was continuously recorded with infrared sensors. All groups explored two familiar, previously encountered objects to a similar extent, both at the end of the acquisition phase and 24h later during the test phase, indicating intact familiarity detection. During the test phase 0-6 SD mice failed to discriminate between the single novel and the two familiar objects. In contrast, the 7-12 SD group and the two control groups explored the novel object significantly longer than the two familiar objects. Plasma corticosterone levels determined after SD did not differ from time-matched undisturbed controls, but were significantly below the level measured after learning alone. ACTH did not differ between the groups. Therefore, it is unlikely that stress contributed to the memory impairment. We conclude that the loss of sleep and the activities the mice engaged in during the SD, impaired recognition memory retrieval, when they occurred immediately after acquisition. The delayed SD enabled memory consolidation during the 6h when the mice were allowed to sleep, and had no detrimental effect on memory. Neither SD schedule impaired object familiarity processing, suggesting that only specific cognitive abilities were sensitive to the intervention. Sleep may either actively promote memory formation, or alternatively, sleep may provide optimal conditions of non-interference for consolidation.  相似文献   

5.
Many behavioral and electrophysiological studies in animals and humans have suggested that sleep and circadian rhythms influence memory consolidation. In rodents, hippocampus-dependent memory may be particularly sensitive to sleep deprivation after training, as spatial memory in the Morris water maze is impaired by rapid eye movement sleep deprivation following training. Spatial learning in the Morris water maze, however, requires multiple training trials and performance, as measured by time to reach the hidden platform is influenced by not only spatial learning but also procedural learning. To determine if sleep is important for the consolidation of a single-trial, hippocampus-dependent task, we sleep deprived animals for 0–5 and 5–10 h after training for contextual and cued fear conditioning. We found that sleep deprivation from 0–5 h after training for this task impaired memory consolidation for contextual fear conditioning whereas sleep deprivation from 5–10 h after training had no effect. Sleep deprivation at either time point had no effect on cued fear conditioning, a hippocampus-independent task. Previous studies have determined that memory consolidation for fear conditioning is impaired when protein kinase A and protein synthesis inhibitors are administered at the same time as when sleep deprivation is effective, suggesting that sleep deprivation may act by modifying these molecular mechanisms of memory storage.  相似文献   

6.
There is extensive evidence that post-training administration of the adrenocortical hormone corticosterone facilitates memory consolidation processes in a variety of contextual and spatial-dependent learning situations. The present experiments examine whether corticosterone can modulate memory of auditory-cue classical fear conditioning, a learning task that is not contingent on contextual or spatial representations. Male Sprague-Dawley rats received three pairings of a single-frequency auditory stimulus and footshock, followed immediately by a post-training subcutaneous injection of either corticosterone (1.0 or 3.0mg/kg) or vehicle. Retention was tested 24h later in a novel test chamber and suppression of ongoing motor behavior served as the measure of conditioned fear. Corticosterone dose-dependently facilitated suppression of motor activity during the 10-s presentation of the auditory cue. As corticosterone administration did not alter responding after unpaired presentations of tone and shock, tone alone, shock alone or absence of tone/shock, the findings indicated that corticosterone selectively facilitated memory of the tone-shock association. Furthermore, injections of corticosterone given 3h after training did not alter motor activity during retention testing, demonstrating that corticosterone enhanced time-dependent memory consolidation processes. These findings provide evidence that corticosterone modulates the consolidation of memory for auditory-cue classical fear conditioning and are consistent with a wealth of data indicating that glucocorticoids can modulate a wide variety of emotionally influenced memories.  相似文献   

7.
Are children better than adults in acquiring new skills (‘how‐to’ knowledge) because of a difference in skill memory consolidation? Here we tested the proposal that, as opposed to adults, children's memories for newly acquired skills are immune to interference by subsequent experience. The establishment of long‐term memory for a trained movement sequence in adults requires a phase of memory consolidation. This results in substantial delayed, ‘offline’, performance gains, which nevertheless remain susceptible to interference by subsequent competing motor experience for several hours after training, unless sleep is afforded in the interval. Here we compared the gains attained overnight (delayed gains) by 9‐year‐olds and adults after training on a novel finger‐to‐thumb movement sequence, with and without subsequent interference by repeating a different movement sequence. Our results show that, in 9‐year‐olds, but not in adults, an interval of 15 min. between the training session and interfering experience sufficed to ensure the expression of delayed, consolidation phase, gains. Nevertheless, in the 9‐year‐olds, as well as in adults, the gains attained with no interference were significantly larger. Altogether, our results show that while the behavioral expressions of childhood and adult consolidation processes are similar, procedural memory stabilizes, in the waking state, at a much faster rate in children. We propose that, in children, rapid stabilization is a mechanism whereby the constraints on consolidating new experiences into long‐term procedural memory are relaxed at the cost of selectivity.  相似文献   

8.
The aim of the present study was to investigate the effects of paradoxical sleep deprivation (PSD) for 96 h on the learning/memory processes in rats submitted to the plus-maze discriminative avoidance task (PM-DAT), which simultaneously evaluates learning, memory, anxiety and motor function. Four experiments were performed in which rats were submitted to: (1) post-training and pre-test PSD; (2) post-training or pre-test PSD; (3) pre-training PSD or pre-training paradoxical sleep (PS) rebound (24 h) and (4) pre-test PSD rebound. Concerning Experiment I, post-training and pre-test PSD induced memory deficits, an anxiolytic-like behavior and an increase in locomotor activity. In Experiment II, both post-training PS-deprived and pre-test PS-deprived groups showed memory deficits per se. However, only the pre-test PS-deprived animals presented anxiolytic-like behavior and increased locomotor activity. In Experiment III, pre-training PS-deprived rats showed learning and memory deficits, anxiolytic-like behavior and increased locomotor activity. A 24h-sleep recovery period after the PSD abolished the learning and memory deficits but not anxiety and locomotor alterations. Finally, sleep rebound did not modify acquisition (Experiment III) and retrieval (Experiment IV). This study strengthened the critical role of paradoxical sleep (but not sleep rebound) in all the phases of learning and memory formation. In addition, it suggests that PSD effects on acquisition and consolidation do not seem to be related to other behavioral alterations induced by this procedure.  相似文献   

9.
Physical practice is known to enhance motor adaptation skills, which refer to the individual ability to compensate for environmental changes. So far, it is still unknown whether a similar effect can be observed following motor imagery (MI). Thirty-nine participants were tested during a joystick tracking task under both normal and mirror conditions (i.e., the inductive direction of the joystick was reversed), before and after a physical practice or MI training phase. Eye movements and electromyographic activity were recorded during MI. Motor performance was also evaluated after a 6 h interval during daytime. As compared to the control group, the results revealed that both MI and physical practice improved motor performance in the mirror condition, during the post-training test. Furthermore, the time to complete the task was further reduced after 6 hours, both in the normal and mirror conditions. These results demonstrate the effectiveness of MI for learning mirror-reversed movements, and for the consolidation process that follows motor adaptation.  相似文献   

10.
The benefits of sleep on memory consolidation have been enhanced for declarative and motor sequence learning through replaying classically conditioned auditory stimuli during sleep, known as targeted memory reactivation (TMR). However, it is unknown if TMR can influence performance of a sensorimotor skill, in the absence of the cognitive requirements of sequence learning. Here, young adults performed a nondominant arm throwing task separated by a full night of sleep or a full day of wake, with half of all participants receiving TMR between sessions. Participants who received TMR during sleep demonstrated enhanced sensorimotor performance relative to all other groups. In conclusion, this pilot study indicates that it is feasible to influence sensorimotor skill performance through TMR during sleep and may serve as a future adjunct to physical rehabilitation. Future studies will aim to confirm the present results with a larger sample size as well as investigate the effects of TMR during sleep on older adults both with and without a history of stroke.  相似文献   

11.
Sleep is known to contribute to motor memory consolidation. Recent studies have provided evidence that a night of sleep plays a similar functional role following motor imagery (MI), while the simple passage of time does not result in performance gains. Here, we examined the benefits of a daytime nap on motor memory consolidation after MI practice. Participants were trained by MI on an explicitly known sequence of finger movements at 11:00. Half of the participants were then subjected (at 14:00) to either a short nap (10 min of stage 2 sleep) or a long nap (60–90 min, including slow wave sleep and rapid eye movement sleep). We also collected data from both quiet and active rest control groups. All participants remained in the lab until being retested at 16:00. The data revealed that a daytime nap after imagery practice improved motor performance and, therefore, facilitated motor memory consolidation, as compared with spending a similar time interval in the wake state. Interestingly, the results revealed that both short and long naps resulted in similar delayed performance gains. The data might also suggest that the presence of slow wave and rapid eye movement sleep does not provide additional benefits for the sleep-dependent motor skill consolidation following MI practice.  相似文献   

12.
The polyamines, spermine, spermidine, and putrescine, are a group of aliphatic amines that may act as physiological modulators of N-methyl-D-aspartate (NMDA) receptors. Although the modulatory role of polyamines in NMDA receptor function has long been known, the effects of polyamines on learning and memory only recently began to be unraveled. In the present study, we investigated the effect of bilateral infusions of spermidine (0.02-2 nmol), a polyamine agonist, into the CA1 region of the rat dorsal hippocampus on inhibitory avoidance learning 30 min pre-training, immediately post-training, 6 h post-training, or 10 min pre-test. Bilateral microinjections of 0.2 nmol spermidine prolonged step-down latencies compared to the respective control group when administered 30 min pre-training or immediately post-training. These results provide evidence that the modulatory effects of spermidine on the acquisition and/or early consolidation of memory of inhibitory avoidance tasks in the hippocampus occur within a limited time window.  相似文献   

13.
Sleep plays an active role in memory consolidation. Because children with Down syndrome (DS) and Williams syndrome (WS) experience significant problems with sleep and also with learning, we predicted that sleep‐dependent memory consolidation would be impaired in these children when compared to typically developing (TD) children. This is the first study to provide a cross‐syndrome comparison of sleep‐dependent learning in school‐aged children. Children with DS (= 20) and WS (= 22) and TD children (= 33) were trained on the novel Animal Names task where they were taught pseudo‐words as the personal names of ten farm and domestic animals, e.g. Basco the cat, with the aid of animal picture flashcards. They were retested following counterbalanced retention intervals of wake and sleep. Overall, TD children remembered significantly more words than both the DS and WS groups. In addition, their performance improved following night‐time sleep, whereas performance over the wake retention interval remained stable, indicating an active role of sleep for memory consolidation. Task performance of children with DS did not significantly change following wake or sleep periods. However, children with DS who were initially trained in the morning continued to improve on the task at the following retests, so that performance on the final test was greater for children who had initially trained in the morning than those who trained in the evening. Children with WS improved on the task between training and the first retest, regardless of whether sleep or wake occurred during the retention interval. This suggests time‐dependent rather than sleep‐dependent learning in children with WS, or tiredness at the end of the first session and better performance once refreshed at the start of the second session, irrespective of the time of day. Contrary to expectations, sleep‐dependent learning was not related to baseline level of performance. The findings have significant implications for educational strategies, and suggest that children with DS should be taught more important or difficult information in the morning when they are better able to learn, whilst children with WS should be allowed a time delay between learning phases to allow for time‐dependent memory consolidation, and frequent breaks from learning so that they are refreshed and able to perform at their best.  相似文献   

14.
Posttraining rapid eye movement (REM) sleep has been reported to be important for efficient memory consolidation. The present results demonstrate increases in the intensity of REM sleep during the night of sleep following cognitive procedural/implicit task acquisition. These REM increases manifest as increases in total number of rapid eye movements (REMs) and REM densities, whereas the actual time spent in REM sleep did not change. Further, the participants with the higher intelligence (IQ) scores showed superior task acquisition scores as well as larger posttraining increases in number of REMs and REM density. No other sleep state changes were observed. None of the pretraining baseline measures of REM sleep were correlated with either measured IQ or task performance. Posttraining increases in REM sleep intensity implicate REM sleep mechanisms in further off-line memory processing, and provide a biological marker of learning potential.  相似文献   

15.
睡眠问题可能会诱发恐惧相关情绪障碍(焦虑、创伤性应激障碍、恐怖症等),研究睡眠影响恐惧学习的认知神经机制,有助于增强对恐惧相关情绪障碍的预测、诊断和治疗。以往研究表明睡眠剥夺影响恐惧习得和消退主要是通过抑制vmPFC活动,阻碍其与杏仁核的功能连接,从而导致恐惧习得增强或是消退学习受损。进一步研究发现睡眠不同阶段对恐惧学习相关脑区有独特的影响:剥夺(缺乏)快速眼动睡眠会抑制vmPFC活动、增强杏仁核、海马激活,导致恐惧习得增强,消退学习受损,此外边缘皮层的功能连接减少破坏了记忆巩固(恐惧记忆和消退记忆);而慢波睡眠主要与海马变化有关,慢波睡眠期间进行目标记忆重激活可促进恐惧消退学习。未来研究需要增加睡眠影响恐惧泛化的神经机制研究、及昼夜节律中断对恐惧消退的影响,以及关注动物睡眠研究向人类睡眠研究转化中存在的问题。  相似文献   

16.
Training people on temporal discrimination can substantially improve performance in the trained modality but also in untrained modalities. A pretest–training–posttest design was used to investigate whether consolidation plays a crucial role for training effects within the trained modality and its transfer to another modality. In the pretest, both auditory and visual discrimination performance was assessed. In the training phase, participants performed only the auditory task. After a consolidation interval of either 5 min or 24 h, participants were again tested in both the auditory and visual tasks. Irrespective of the consolidation interval, performance improved from the pretest to the posttest in both modalities. Most importantly, the training effect for the trained auditory modality was independent of the consolidation interval whereas the transfer effect to the visual modality was larger after 24 h than after 5 min. This finding shows that transfer effects benefit from extended consolidation.  相似文献   

17.
The relative effects of extended sleep, reduced sleep, and shifts of habitual sleep time on subsequent performance and mood were studied. Ten healthy male university students who regularly sleep 9.5-10.5 hr were the subjects. Measurements were obtained from a 45-min auditory vigilance task, a 5-min experimenter-paced addition task and a mood adjective check list 30 min after awakening, at midday, and in the evening following five electroencephalographically recorded nights of sleep. The experimental treatments compromised at 9.5-10.5 hr habitual sleep condition and four conditions in which the regular sleep period was lengthened, reduced, delayed, and advanced by 3hr. Following each 3-hr altered condition of sleep there was an equivalent decline in vigilance performance and in subjective arousal as measured by the mood scales. Together with other recent evidence, the present results support the hypothesis that acute disruption of the 24-hr sleep-wakefulness cycle produces degradations in human performance largely independent of total sleep time.  相似文献   

18.
This study investigated the effects of stimulus presentation modality on working memory performance in children with reading disabilities (RD) and in typically developing children (TDC), all native speakers of Greek. It was hypothesized that the visual presentation of common objects would result in improved learning and recall performance as compared to the auditory presentation of stimuli. Twenty children, ages 10–12, diagnosed with RD were matched to 20 TDC age peers. The experimental tasks implemented a multitrial verbal learning paradigm incorporating three modalities: auditory, visual, and auditory plus visual. Significant group differences were noted on language, verbal and nonverbal memory, and measures of executive abilities. A mixed-model MANOVA indicated that children with RD had a slower learning curve and recalled fewer words than TDC across experimental modalities. Both groups of participants benefited from the visual presentation of objects; however, children with RD showed the greatest gains during this condition. In conclusion, working memory for common verbal items is impaired in children with RD; however, performance can be facilitated, and learning efficiency maximized, when information is presented visually. The results provide further evidence for the pictorial superiority hypothesis and the theory that pictorial presentation of verbal stimuli is adequate for dual coding.  相似文献   

19.
This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation-associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items.  相似文献   

20.
Differential conditioning of Mongolian gerbils to linearly frequency-modulated tones (FM) has recently received experimental attention. In the study of the role of cerebral protein synthesis for FM discrimination memory, gerbils received post-training bilateral injections of anisomycin into the auditory cortex under light halothane anesthesia. Compared with saline-treated controls, anisomycin-treated gerbils showed a discrimination decrement during the subsequent three days of training. They markedly improved their performance within training sessions, but started each session at low levels. When repeatedly trained gerbils received post-session injections of anisomycin, discrimination performance during subsequent sessions was similar to the pre-injection performance, indicating that retention, retrieval, reconsolidation, and expression of the established reaction were not affected. However, the improvement of a partially established discrimination reaction was impaired after this treatment. Intracortical injections of emetine confirmed this finding. Neither drug affected FM discrimination learning when given several days before the initial training. Our results suggest that protein-synthesis inhibitors applied to the auditory cortex of gerbils during the post-acquisition phase interfered with learning and memory-related aspects of FM processing. The resulting deficit was evident for a number of post-injection training days. This effect was probably due to impaired consolidation, i.e., processes required for long-term stabilization or retrieval of the memory trace while leaving short-term memory intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号