首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
N-methyl-D-aspartate (NMDA) receptors play an important role in excitatory neurotransmission and mediate synaptic plasticity associated with learning and memory. NMDA receptors are composed of two NR1 and two NR2 subunits and the identity of the NR2 subunit confers unique electrophysiologic and pharmacologic properties to the receptor. The precise role of NR2C-containing receptors in vivo is poorly understood. We have performed a battery of behavioral tests on NR2C knockout/nβ-galactosidase knock-in mice and found no difference in spontaneous activity, basal anxiety, forced-swim immobility, novel object recognition, pain sensitivity and reference memory in comparison to wildtype counterparts. However, NR2C knockout mice were found to exhibit deficits in fear acquisition and working memory compared to wildtype mice. Deficit in fear acquisition correlated with lack of fear conditioning-induced plasticity at the thalamo-amygdala synapse. These findings suggest a unique role of NR2C-containing receptors in associative and executive learning representing a novel therapeutic target for deficits in cognition.  相似文献   

3.
Somatostatin has been implicated in various cognitive and emotional functions, but its precise role is still poorly understood. Here, we have made use of mice with somatostatin deficiency, based upon genetic invalidation or pharmacologically induced depletion, and Pavlovian fear conditioning in order to address the contribution of the somatostatin system to associative fear memory. The results demonstrate an impairment of foreground and background contextual but not tone fear conditioning in mice with targeted ablation of the somatostatin gene. These deficits were associated with a decrease in long-term potentiation in the CA1 area of the hippocampus. Both the behavioral and the electrophysiological phenotypes were mimicked in wild-type mice through application of the somatostatin-depleting substance cysteamine prior to fear training, whereas no further deficits were observed upon application in the somatostatin null mutants. These results suggest that the somatostatin system plays a critical role in the acquisition of contextual fear memory, but not tone fear learning, and further highlights the role of hippocampal synaptic plasticity for information processing concerning contextual information.  相似文献   

4.
Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice.  相似文献   

5.
The neural circuitry underlying emotional learning and memory is known to involve both the amygdala and hippocampus. Both of these structures undergo anatomical and functional changes during the course of Alzheimer's disease. The present study used expression of the immediate early gene c-Fos to examine the effect of amyloid-induced synaptic pathology on neural activity in the hippocampus and amygdala immediately following Pavlovian fear conditioning. Tg2576 mice underwent cued fear conditioning and the regional interdependencies of c-Fos expression in the hippocampus and the amygdala were assessed using structural equation modelling. Tg2576 mice displayed normal acquisition of conditioned freezing to a punctate auditory cue paired with shock. However, the analysis of c-Fos expression indicated abnormal regional activity in the hippocampal dentate gyrus of Tg2576 mice. Structural equation modelling also supported the view that activity within the amygdala was independent of hippocampal activity in Tg2576 mice (unlike control mice) and regional interaction between the dentate gyrus and CA3 region was disrupted. The results provide novel insight into the effects of excess amyloid production on brain region interdependencies underpinning emotional learning.  相似文献   

6.
The GABAAR α4 subunit is highly expressed in the dentate gyrus region of the hippocampus at predominantly extra synaptic locations where, along with the GABAAR δ subunit, it forms GABAA receptors that mediate a tonic inhibitory current. The present study was designed to test hippocampus-dependent and hippocampus-independent learning and memory in GABAAR α4 subunit-deficient mice using trace and delay fear conditioning, respectively. Mice were of a mixed C57Bl/6J X 129S1/X1 genetic background from α4 heterozygous breeding pairs. The α4-knockout mice showed enhanced trace and contextual fear conditioning consistent with an enhancement of hippocampus-dependent learning and memory. These enhancements were sex-dependent, similar to previous studies in GABAAR δ knockout mice, but differences were present in both males and females. The convergent findings between α4 and δ knockout mice suggests that tonic inhibition mediated by α4βδ GABAA receptors negatively modulates learning and memory processes and provides further evidence that tonic inhibition makes important functional contributions to learning and behavior.  相似文献   

7.
Auditory fear conditioning is one of the most well characterized models used in studies of learning and memory. In order to ensure the animals have been conditioned to fear the auditory stimulus, animals are generally tested for their response to this stimulus in a different context to that used for training. For this reason it is often unclear how much contextual fear conditioning the animals also acquire when they are trained. In this study, we have established a protocol for fear conditioning in mice which is explicit for auditory cues; mice trained using this protocol, show a very low fear response to contextual cues encountered during training. We have undertaken analysis to look for potential brain changes associated with this model by measuring levels of the synaptic vesicle protein, synaptophysin, in the basolateral nuclei of the amygdala following auditory fear conditioning. Our results show levels of synaptophysin were significantly higher in mice which learnt to associate the auditory stimulus with fear, in comparison to all non-learning control animals. These findings support the idea that synaptic plasticity associated with formation of fear conditioning to a single specific conditioned stimulus occurs within the basolateral nuclei of the amygdala. Furthermore, our results demonstrate the usefulness of this model in looking for changes in the brain specific for a defined learning event.  相似文献   

8.
The delta subunit of the GABA(A) receptor (GABA(A)R) is highly expressed in the dentate gyrus of the hippocampus. Genetic deletion of this subunit reduces synaptic and extrasynaptic inhibition and decreases sensitivity to neurosteroids. This paper examines the effect of these changes on hippocampus-dependent trace fear conditioning. Compared to controls, delta knockout mice exhibited enhanced acquisition of tone and context fear. Hippocampus-independent delay conditioning was normal in these animals. These results suggest that reduced inhibition in the dentate gyrus facilitates the acquisition of trace fear conditioning. However, the enhancement in trace conditioning was only observed in female knockout mice. The sex-specificity of this effect may be a result of neuroactive steroids. These compounds vary during the estrus cycle, can increase GABAergic inhibition, and have been shown to impair hippocampus-dependent learning. We propose that activation of GABA(A)Rs by neuroactive steroids inhibits learning processes in the hippocampus. Knockouts are immune to this effect because of the reduced neurosteroid sensitivity that accompanies deletion of the delta subunit. Relationships between neurosteroids, hippocampal excitability, and memory are discussed.  相似文献   

9.
Deletions, translocations, or point mutations in the CREB-binding protein (CBP) gene have been associated with Rubinstein-Taybi Syndrome; a human developmental disorder characterized by retarded growth and reduced mental function. To examine the role of CBP in memory, transgenic mice were generated in which the CaMKII alpha promoter drives expression of an inhibitory truncated CBP protein in forebrain neurons. Examination of hippocampal long-term potentiation (LTP), a form of synaptic plasticity thought to underlie memory storage, revealed significantly reduced late-phase LTP induced by dopamine-regulated potentiation in hippocampal slices from CBP transgenic mice. However, four-train induced late-phase LTP is normal. Behaviorally, CBP transgenic mice exhibited memory deficits in spatial learning in the Morris water maze and deficits in long-term memory for contextual fear conditioning, two hippocampus-dependent tasks. Together, these results demonstrate that CBP is involved in specific forms of hippocampal synaptic plasticity and hippocampus-dependent long-term memory formation.  相似文献   

10.
Protein synthesis is required for the expression of enduring memories and long-lasting synaptic plasticity. During cellular proliferation and growth, S6 kinases (S6Ks) are activated and coordinate the synthesis of de novo proteins. We hypothesized that protein synthesis mediated by S6Ks is critical for the manifestation of learning, memory, and synaptic plasticity. We have tested this hypothesis with genetically engineered mice deficient for either S6K1 or S6K2. We have found that S6K1-deficient mice express an early-onset contextual fear memory deficit within one hour of training, a deficit in conditioned taste aversion (CTA), impaired Morris water maze acquisition, and hypoactive exploratory behavior. In contrast, S6K2-deficient mice exhibit decreased contextual fear memory seven days after training, a reduction in latent inhibition of CTA, and normal spatial learning in the Morris water maze. Surprisingly, neither S6K1- nor S6K2-deficient mice exhibited alterations in protein synthesis-dependent late-phase long-term potentiation (L-LTP). However, removal of S6K1, but not S6K2, compromised early-phase LTP expression. Furthermore, we observed that S6K1-deficient mice have elevated basal levels of Akt phosphorylation, which is further elevated following induction of L-LTP. Taken together, our findings demonstrate that removal of S6K1 leads to a distinct array of behavioral and synaptic plasticity phenotypes that are not mirrored by the removal of S6K2. Our observations suggest that neither gene by itself is required for L-LTP but instead may be required for other types of synaptic plasticity required for cognitive processing.  相似文献   

11.
A Necessity for MAP Kinase Activation in Mammalian Spatial Learning   总被引:21,自引:3,他引:18       下载免费PDF全文
Although the biochemical mechanisms underlying learning and memory have not yet been fully elucidated, mounting evidence suggests that activation of protein kinases and phosphorylation of their downstream effectors plays a major role. Recent findings in our laboratory have shown a requirement for the mitogen-activated protein kinase (MAPK) cascade in hippocampal synaptic plasticity. Therefore, we used an inhibitor of MAPK activation, SL327, to test the role of the MAPK cascade in hippocampus-dependent learning in mice. SL327, which crosses the blood-brain barrier, was administered intraperitoneally at several concentrations to animals prior to cue and contextual fear conditioning. Administration of SL327 completely blocked contextual fear conditioning and significantly attenuated cue learning when measured 24 hr after training. To determine whether MAPK activation is required for spatial learning, we administered SL327 to mice prior to training in the Morris water maze. Animals treated with SL327 exhibited significant attenuation of water maze learning; they took significantly longer to find a hidden platform compared with vehicle-treated controls and also failed to use a selective search strategy during subsequent probe trials in which the platform was removed. These impairments cannot be attributed to nonspecific effects of the drug during the training phase; no deficit was seen in the visible platform task, and injection of SL327 following training produced no effect on the performance of these mice in the hidden platform task. These findings indicate that the MAPK cascade is required for spatial and contextual learning in mice.  相似文献   

12.
Synaptically released Zn2+ is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles, highly enriched in the amygdala-associated neural circuitry, and ZnT3 KO mice lack Zn2+ in synaptic vesicles. However, earlier work reported no deficiency in fear memory in ZnT3 KO mice, which is surprising based on the effects of Zn2+ on amygdala synaptic plasticity. We therefore reexamined ZnT3 KO mice in various tasks for learned and innate fear. The mutants were deficient in a weak fear-conditioning protocol using single tone-shock pairing but showed normal memory when a stronger, five-pairing protocol was used. ZnT3 KO mice were deficient in memory when a tone was presented as complex auditory information in a discontinuous fashion. Moreover, ZnT3 KO mice showed abnormality in trace fear conditioning and in fear extinction. By contrast, ZnT3 KO mice had normal anxiety. Thus, ZnT3 is involved in associative fear memory and extinction, but not in innate fear, consistent with the role of synaptic zinc in amygdala synaptic plasticity.  相似文献   

13.
Metabotropic glutamate receptor 7 (mGluR7) is expressed in brain regions implicated in emotional learning and working memory, and previous behavioral experiments indicated contributions of mGluR7 to various complex behaviors. In the present study, we investigated the specific effects of mGluR7 deletion on a variety of conditioning paradigms that model crucial neurocognitive and psychopathological behavioral phenomena. Null-mutant mGluR7−/− mice displayed defects during scheduled appetitive conditioning, acquisition and extinction of appetitive odor conditioning, extinction of response suppression-based conditioned emotional responding (CER), acquisition of discriminative CER, and contextual fear conditioning. mGluR7−/− animals were slower to acquire the association between a conditioned stimulus and a positive or negative reinforcer, but eventually reached similar performance levels to their wildtype littermates. Notably, extinction learning of conditioned responses was slower in mGluR7−/− compared to wildtype animals. The observed delays in the acquisition of complicated stimulus associations across conditioning procedures may suggest a critical role for mGluR7 in neurocognitive functions and psychopathology.  相似文献   

14.
Contextual fear conditioning under training conditions involving high stressor intensities has been proposed as an animal model for traumatic memories. The strength of memory for this task has been related to the intensity of the conditioning stressor and post-training corticosterone values. However, administration of a glucocorticoid receptor (GR) antagonist only attenuated memory for this task in rats conditioned at a moderate shock intensity (0.4 mA), but failed to influence conditioning in rats trained at a high shock intensity (1 mA). Here, we further questioned whether interfering with glucocorticoid action at the time of training might be effective in influencing contextual fear conditioning in rats trained under different shock intensities. Rats were subcutaneously injected with the glucocorticoid synthesis inhibitor metyrapone (50, 100 mg/kg) 90 min before being trained in the contextual fear conditioning task, at either 0.4 or 1 mA shock intensities. The results showed that metyrapone, in a dose-dependent manner: (i) attenuated long-term expression of contextual fear conditioning, both in 0.4- and 1 mA-trained rats; and (ii) efficiently prevented increased plasma corticosterone concentration. In addition to further supporting a facilitating role of glucocorticoids in memory consolidation, these findings suggest a critical involvement of these hormones in the formation of traumatic memories.  相似文献   

15.
The GluR1 subunit of the AMPA receptor is required for hippocampal-dependent memory formation, emotional learning and synaptic plasticity. Recent work has shown that GluR1-independent synaptic plasticity is mediated by nitric oxide. Nitric oxide activity is influenced by estrogen. It is unknown whether this gender-dependent effect conveys a gender dimorphic requirement of GluR1 for learning. This hypothesis was tested in two behavioral paradigms. In Experiment 1, the retention of contextual fear conditioning was impaired in male but not female GluR1 knockout mice. In Experiment 2, GluR1 knockout mice made significantly more arm entry errors during acquisition of a radial-arm watermaze task. This deficit was independent of gender. These results indicate that some forms of learning are gender dimorphic in GluR1 knockout mice. The results are discussed with reference to task and gender-specific interactions between GluR1 receptor intracellular signalling pathways.  相似文献   

16.
Accumulating evidence indicates the key role of alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII) in synaptic plasticity and learning, but it remains unclear how this kinase participates in the processing of memory extinction. Here, we investigated the mechanism by which alphaCaMKII may mediate extinction by using heterozygous knock-in mice with a targeted T286A mutation that prevents the autophosphorylation of this kinase (alphaCaMKII(T286A+/-)). Remarkably, partial reduction of alphaCaMKII function due to the T286A(+/-) mutation prevented the development of extinction without interfering with initial hippocampus-dependent memory formation as assessed by contextual fear conditioning and the Morris water maze. It is hypothesized that the mechanism of extinction may differ depending on the interval at which extinction training is started, being more akin to "new learning" at longer intervals and "unlearning" or "erasure" at shorter intervals. Consistent with this hypothesis, we found that extinction conducted 24 h, but not 15 min, after contextual fear training showed spontaneous recovery (reappearance of extinguished freezing responses) 21 d following the extinction, representing behavioral evidence for new learning and unlearning mechanisms underlying extinction 24 h and 15 min post-training, respectively. Importantly, the alphaCaMKII(T286A+/-) mutation blocked new learning of contextual fear memory extinction, whereas it did not interfere with unlearning processes. Our results demonstrate a genetic dissociation of new learning and unlearning mechanisms of extinction, and suggest that alphaCaMKII is responsible for extinguishing memories specifically through new learning mechanisms.  相似文献   

17.
The roles of serine proteases and protease activated receptors have been extensively studied in coagulation, wound healing, inflammation, and neurodegeneration. More recently, serine proteases have been suggested to influence synaptic plasticity. In this context, we examined the role of protease activated receptor 1 (PAR1), which is activated following proteolytic cleavage by thrombin and plasmin, in emotionally motivated learning. We were particularly interested in PAR1 because its activation enhances the function of NMDA receptors, which are required for some forms of synaptic plasticity. We examined several baseline behavioral measures, including locomotor activity, expression of anxiety-like behavior, motor task acquisition, nociceptive responses, and startle responses in C57Bl/6 mice in which the PAR1 receptor has been genetically deleted. In addition, we evaluated learning and memory in these mice using two memory tasks, passive avoidance and cued fear-conditioning. Whereas locomotion, pain response, startle, and measures of baseline anxiety were largely unaffected by PAR1 removal, PAR1-/- animals showed significant deficits in a passive avoidance task and in cued fear conditioning. These data suggest that PAR1 may play an important role in emotionally motivated learning.  相似文献   

18.
The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling cascade involved in both synaptic plasticity and memory formation. Following our recent observation of translation regulation in taste learning and memory, we aimed to study MAPK-dependent translation regulation in long-term potentiation (LTP), a cellular model of learning and memory. We first analyzed ERK1/2 activation following high-frequency stimulation in the dentate gyrus (DG) of the hippocampus, in vivo. Surprisingly, our results indicate that the activation of both ERK2 and p38 was strongly affected by the order in which the DG was dissected out, but not by other experimental parameters. Specifically, we found that ERK2 and p38 phosphorylation were higher in the second than in the first dentate gyrus removed (up to 30s apart). Similar results were obtained when we isolated the 'order of removal' factor by looking at MAPK phosphorylation in rats that had not undergone any electrophysiological procedure (i.e., na?ve rats). This effect is so robust, that it probably masks the effect of LTP induction on MAPK activation. We suggest that some of the correlations found between MAPK activation and brain function in vivo may be due to cellular stress. In addition, careful experimental procedures and control are indispensable in the analysis of biochemical correlations of post-translation modifications that subserve both general neuronal function and synaptic plasticity.  相似文献   

19.
Hippocampal-dependent synaptic plasticity and memory are modulated by apamin-sensitive small conductance Ca2+-activated K+ (SK) channels. Transgenic mice overexpressing SK2 channels (SK2+/T mice) exhibit marked deficits in hippocampal memory and synaptic plasticity, as previously reported. Here, we examined whether SK2 overexpression affects the encoding or retention of contextual memory. Compared with wild-type littermates, SK2+/T mice exhibited significantly less context-dependent freezing 10 min and 24 h after conditioning. Interestingly, this contextual memory impairment was eliminated if SK2+/T mice were permitted longer pre-exposure to the conditioning chamber. These data support converging evidence that SK2 channels restrict the encoding of hippocampal memory.  相似文献   

20.
The present study investigated whether the selective nociceptin opioid peptide (NOP) receptor agonist, Ro64-6198, impairs acquisition of fear conditioning through glutamatergic mechanisms. Systemic administration of Ro64-6198 (0.3 and 1 mg/kg) or the non-competitive NMDA receptor antagonist, MK-801 (0.03 and 0.1 mg/kg) prior to conditioning severely impaired contextual but not cued fear learning in C57BL/6N mice. When administered together at sub-effective doses, Ro64-6198 (0.5 mg/kg) and MK-801 (0.05 mg/kg), synergistically impaired contextual fear learning, but left cued fear learning intact. We next used the immediate shock deficit paradigm (ISD) to examine the effects of Ro64-6198 and MK-801 on contextual memory formation in the absence of the foot-shock. As expected, naive mice that were shocked briefly after being placed in the training chamber displayed no contextual fear conditioning. This learning deficit was elevated by prior exposure of mice to the training context. Furthermore, administration of Ro64-6198 and MK-801, either separately at amnesic doses (1 mg/kg and 0.1 mg/kg, respectively) or concomitantly at sub-effective doses (0.5 mg/kg and 0.05 mg/kg, respectively) significantly reduced the facilitating effects of context preexposure. These findings demonstrate the existence of functional antagonism between NOP and NMDA receptors that predominantly contributes to modulation of conditioned fear learning which involves spatial-processing demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号