首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frequency-discrimination thresholds (FDTs) for 1-kHz tone pips with durations of 40, 100, and 200 msec were measured in the left and right ears of 10 normal-hearing listeners, before and after six 2-h frequency-discrimination training sessions involving, exclusively, the 200-msec duration and the right ear. In the trained ear, highly significant improvements in FDTs were observed at all durations. Further inspection of the data suggested complete generalization between 200 and 100 msec, but not at 40 msec. Posttraining FDTs were not found to differ between the two ears for the two untrained durations, but proved significantly smaller in the right (trained) than in the left (untrained) ear at the trained (200-msec) duration only. A control experiment involving 10 additional subjects allowed us to establish the absence of intrinsic differences in pretraining FDTs between the right and left ears. Overall, these findings indicate that frequency-discrimination learning generalizes widely across stimulus durations and across ears, but that part of the improvement is specific to the range of durations and to the ear used in training.  相似文献   

2.
A visually reinforced operant procedure was employed to obtain 2-point threshold-duration functions in 7-month-old infants and adults in two experimental paradigms. In Experiment 1, thresholds were determined for 10- and 100-msec, 500-Hz tones and octave-band noise bursts presented in quiet and noise backgrounds. Threshold-duration functions were significantly steeper for infants than for adults under all experimental conditions, and did not differ in slope as a result of differences in either stimulus bandwidth or masking noise. In Experiment 2, thresholds for trains of brief 500-Hz tone pulses were examined in infant and adult subjects. Infant functions were adult-like for integration of multiple-pulse stimuli, suggesting that the traditional, long-term process of temporal summation is mature by 7 months of age. Differences between the present results and those previously obtained for 4-kHz stimuli appear to be consistent with the view that different mechanisms are involved in the detection of low- and high-frequency signals.  相似文献   

3.
When a high-intensity tone (inducer) is followed by a moderate-intensity tone (test tone), the loudness of the latter is reduced. This phenomenon, called induced loudness reduction (ILR), depends on the frequency separation of the two tones; as the difference in frequency increases, the amount of ILR decreases. However, the precise course of this decrease is not well known. This article presents two experiments that address this question. In the first experiment, the amount of loudness reduction produced by a 2.5-kHz 80-dB-SPL inducer was measured with the frequency of the test tone swept from 800 Hz to 6 kHz. In the second experiment, the amount of ILR was measured with the same inducer and with test tones set at 2, 2.5, 3, and 4 kHz. Both experiments show that some ILR occurs at frequency separations as wide as four critical bands.  相似文献   

4.
Forty Ss pressed a left- or right-hand key depending on the ear in which they heard a 500-Hz stimulus tone. Half of the Ss were instructed to press the key on the same side as the ear stimulated (corresponding condition), while the other half pressed the key on the opposite side (noncorresponding condition). A 200-Hz warning tone preceded the stimulus tone by either 200 or 400 msec. The warning tone was presented to the left ear, the right ear, or to both ears in a predetermined random sequence. The locus of the warning tone affected RT on noncorresponding trials but not on corresponding trials. The effect consisted of a significant slowing of information processing on trials where the warning tone was contralateral to the response. Results were explained in terms of an initial tendency to respond toward the source of the warning tone.  相似文献   

5.
Listeners exposed to a tone increasing in intensity report an aftereffect of decreasing loudness in a steady tone heard afterward. In the present study, the spectral dependence of the monotic decreasing-loudness aftereffect (adapting and testing 1 ear) was compared with (a) the spectral dependence of the interotic decreasing-loudness aftereffect (adapting 1 ear and testing the other ear) and (b) a non-adaptation control condition. The purpose was to test the hypothesis that the decreasing-loudness aftereffect may concern the sensory processing associated with dynamic localization. The hypothesis is based on two premises: (a) dynamic localization requires monaural sensory processing, and (b) sensory processing is reflected in spectral selectivity. Hence, the hypothesis would be supported if the monotic aftereffect were more spectrally dependent and stronger than the interotic aftereffect; A. H. Reinhardt-Rutland (1998) showed that the hypothesis is supported with regard to the related increasing-loudness aftereffect. Two listeners were exposed to a 1-kHz adapting stimulus. From responses of “growing softer” or “growing louder” to test stimuli changing in intensity, nulls were calculated; test carrier frequencies ranged from 0.5 kHz to 2 kHz. Confirming the hypothesis, the monotic aftereffect peaked at around the 1-kHz test carrier frequency. In contrast, the interotic aftereffect showed little evidence of spectrally dependent peaking. Except when test and adaptation carrier frequencies differed markedly, the interotic aftereffect was smaller than the monotic aftereffect.  相似文献   

6.
Listeners exposed to a tone increasing in intensity report an aftereffect of decreasing loudness in a steady tone heard afterward. In the present study, the spectral dependence of the monotic decreasing-loudness aftereffect (adapting and testing 1 ear) was compared with (a) the spectral dependence of the interotic decreasing-loudness aftereffect (adapting 1 ear and testing the other ear) and (b) a non-adaptation control condition. The purpose was to test the hypothesis that the decreasing-loudness aftereffect may concern the sensory processing associated with dynamic localization. The hypothesis is based on two premises: (a) dynamic localization requires monaural sensory processing, and (b) sensory processing is reflected in spectral selectivity. Hence, the hypothesis would be supported if the monotic aftereffect were more spectrally dependent and stronger than the interotic aftereffect; A. H. Reinhardt-Rutland (1998) showed that the hypothesis is supported with regard to the related increasing-loudness aftereffect. Two listeners were exposed to a 1-kHz adapting stimulus. From responses of "growing softer" or "growing louder" to test stimuli changing in intensity, nulls were calculated; test carrier frequencies ranged from 0.5 kHz to 2 kHz. Confirming the hypothesis, the monotic aftereffect peaked at around the 1-kHz test carrier frequency. In contrast, the interotic aftereffect showed little evidence of spectrally dependent peaking. Except when test and adaptation carrier frequencies differed markedly, the interotic aftereffect was smaller than the monotic aftereffect.  相似文献   

7.
The frequency discriminability of a 70-dB SPL, 20-msec test tone followed 5 msec later by an equally intense 500-msec, 800-Hz interference tone was studied in a single-interval procedure for one diotic condition and three dichotic conditions. The test tone (T) and interference tone (I) were presented the same to both ears (ToIo, diotic condition) and in three dichotic conditions: (1) the interference tone was presented to the right ear (R) and the test tone to the left ear (L) (TLIR), (2) the interference tone was presented the same to both ears and the test tone to one ear (TmIo), and (3) the interference tone was presented the same to both ears and the test tone to both ears with an interaural phase reversal (TπIo). The threshold value for test tone frequency discrimination in the diotic temporal interference condition was approximately six times greater than that obtained without an interference tone. The three dichotic temporal interference conditions yielded essentially equivalent threshold values which were approximately 2.4 times that obtained when the test tone was presented without an interference tone. Therefore, although never equaling interference-free conditions, dichotic test tone presentations can improve frequency recognition relative to diotic conditions at intensities well above threshold. It is postulated that this improvement may be due to the spatial separation of test and interfering tones, rather than to possible differences in diotic vs. dichotic subjective intensities. Dichotic-diotic frequency recognition differences did not occur when a 100-msec interval separated the test and interfering tone or when the interfering tone preceded the test tone.  相似文献   

8.
Four cats were trained to avoid shock by responding to the intermittent occurrence of 1-kHz tone pulses at one ear, while a continual train of noise pulses was simultaneously presented either to the signal ear alone or to both ears. Using the masked threshold levels determined with monaural noise as a reference, the amount of unmasking produced by the addition of noise to the nonsignal ear was measured. Significantly lower tonal detection thresholds were observed when noise equal in intensity to that at the signal ear was added to the nonsignal ear. Additional unmasking occurred when the intensity of the noise at the latter ear was raised to a level 10 db. higher than that at the signal ear.  相似文献   

9.
A device is described which (1) generates very accurate time calibration tones suitable for tape recording along with experimental behaviors, and (2) creates from such a recorded tone an easy-to-read structured pulse train for oscillographic tracings. Calibration tones at 1-, 5-, and 10-kHz pulse rates are derived from a crystal oscillator module and are made available for tape recording at one output of the device. The second output produces a four-level structured pulse train in which there is one pulse for each cycle of the calibration tone (every 10th is a little larger, every 100th a little larger yet, and every 1,000th larger still). An example of the use of this device in speech, timing research is given.  相似文献   

10.
Habituation – the most basic form of learning – is used to evaluate central nervous system (CNS) maturation and to detect abnormalities in fetal brain development. In the current study, habituation, stimulus specificity and dishabituation of auditory evoked responses were measured in fetuses and newborns using fetal magnetoencephalography (fMEG). An auditory habituation paradigm consisting of 100 trains of five 500 Hz tones, one 750 Hz tone (dishabituator) and two more 500 Hz tones, respectively, were presented to 41 fetuses (gestational age 30–39 weeks) and 22 newborns or babies (age 6–89 days). A response decrement between the first and fifth tones (habituation), an increment between the fifth tone and the dishabituator (stimulus specificity) and an increment between the fifth (last tone before the dishabituator) and seventh tones (first tone after the dishabituator) (dishabituation) were expected. Fetuses showed weak responses to the first tone. However, a significant response decrement between the second and fifth tones (habituation) and a significant increment between the fifth tone and the dishabituator (stimulus specificity) were found. No significant difference was found for dishabituation nor was a developmental trend found at the group level. From the neonatal data, significant values for stimulus specificity were found. Sensory fatigue or adaptation was ruled out as a reason for the response decrement due to the strong reactions to the dishabituator. Taken together, the current study used fMEG to directly show fetal habituation and provides evidence of fetal learning in the last trimester of pregnancy.  相似文献   

11.
Observers were adapted to simulated auditory movement produced by dynamically varying the interaural time and intensity differences of tones (500 or 2,000 Hz) presented through headphones. At lO-sec intervals during adaptation, various probe tones were presented for 1 sec (the frequency of the probe was always the same as that of the adaptation stimulus). Observers judged the direction of apparent movement (“left” or “right”) of each probe tone. At 500 Hz, with a 200-deg/sec adaptation velocity, “stationary” probe tones were consistently judged to move in the direction opposite to that of the adaptation stimulus. We call this result an auditory motion aftereffect. In slower velocity adaptation conditions, progressively less aftereffect was demonstrated. In the higher frequency condition (2,000 Hz, 200-deg/sec adaptation velocity), we found no evidence of motion aftereffect. The data are discussed in relation to the well-known visual analog-the “waterfall effect.” Although the auditory aftereffect is weaker than the visual analog, the data suggest that auditory motion perception might be mediated, as is generally believed for the visual system, by direction-specific movement analyzers.  相似文献   

12.
If a weak tone precedes an intense tone, then the acoustic startle eyeblink reflex elicited by the stronger stimulus is inhibited. It has been suggested that the leading stimulus gives rise to a protective middle ear reflex that attenuates the effective intensity of the second. This hypothesis was tested and disproved. In seven subjects intense tone bursts sufficient to elicit both intratympanic and eyeblink responses were presented sometimes alone and sometimes preceded at various lead times (25 to 400 msec) by a weak tone. The weak tone inhibited the amplitude of the eye blink to the strong tone, maximally at intervals of 100 to 200 msec, but was never seen to produce any of the anticipatory impedance changes that would be characteristic of middle ear reflex activity during the interval between the two stimuli.  相似文献   

13.
Five subjects were required in each trial to compare directly two sounds and to indicate which sound was louder. Each of the 64 sounds employed consisted of a combination of one of eight intensity levels of a 2-kHz tone and one of eight intensities of a 5-kHz tone. If, as Fletcher and Munson (1933) argued, loudness is additive for tone combinations in which the frequencies are widely separated, then subjects’ judgments should reflect the summed loudnesses of the 2- and 5-kHz tones in a two-tone combination. Judgments of individual subjects were shown to satisfy the conditions for an additive structure, and individual loudness scales were constructed. These loudness scales varied from subject to subject. Since this paired comparison procedure minimized response biases, the results suggest substantial individual differences in the sensory representation of sound intensity. The relations among sensory scales derived from other structured sensory judgments, such as binaural loudness, are discussed.  相似文献   

14.
The development of head orientation to auditory stimulation was examined in rat pups at Postnatal Days 8, 11, 14, 17, and 20. The animals were tested in a quiet environment with single bursts of 65 dB (SPL) broad-band noise. A reflexive head turn toward the sound was first seen on Postnatal Day 14 and subsequently on Days 17 and 20. This result demonstrates that the onset of directional auditory responses occurred between Day 11 and Day 14. The role of binaural cues in early sound orientation was examined in 17-day-old pups with monaural ligation of the external meatus. These animals were unable to localize a sound source and consistently turned toward the side of the unligated ear regardless of the position of the stimulus. Thus binaural cues were shown to be important for head orientation to sound in early development. In a separate study, head orientation to high and low frequency tone pips was examined. Directional responses were first seen on Day 12 for a 16-kHz tone and Day 14 for a 2-kHz tone. These results indicate an earlier onset for orientation to high frequency sounds in the rat.  相似文献   

15.
The position and image-width of the simultaneous images produced by very short tone pulses were measured as a function of interaural time difference (ITD) at both low- (250 and 800 Hz) and high- (2500 and 8000 Hz) frequencies using a direct-estimation technique.

Primary images are lateralized towards the ear receiving the leading stimulus. At low frequencies image position is proportional to interaural phase-difference (IPD) below 90° and remains at the lead-ear for larger values. At high frequencies image position is proportional to ITD up to 500-1000 μsec. Secondary images are reported on the opposite side of the head for IPDs greater than 180° at low frequencies, and at ITDs greater than 500 μsec at high frequencies. Image width is approximately constant for all ITDs and both images at a given frequency, but becomes more compact as frequency increases.

The data are discussed in terms of onset cues and stimulus fine-structure cues. The best explanation is in terms of an onset mechanism, but one that is calibrated in terms of IPD at low frequencies. The existence of double images is explained in terms of a breakdown in the mechanism determining fusion.  相似文献   

16.
Summary In this study the role of perceptual and motor factors on the motor organization (integrated versus parallel) adopted by musically skilled and unskilled subjects in a polyrhythmic tapping task was investigated. Subjects tapped a 3:2 polyrhythm to match the timing of two isochronous tone trains, one tone train for each hand. Perceptual factors were examined by the manipulation of the frequency difference between the tone trains to produce either an integrated or a streamed percept. Motor factors were examined by comparison of performance on two versions of the 3:2 polyrhythm. In one (simultaneous) version, each cycle of the polyrhythm began with a simultaneous left- and right-hand tap. In the other (shifted) version a 100-ms interval was introduced between the initial left and right taps in each cycle. Examination of the pattern of variances and covariances among intertap intervals suggested that most of the subjects in this study adopted an integrated motor organization that involved interleaving the timing of the two hands. Further analysis revealed that a serial chained model described the pattern of covariances best for the simultaneous pattern, whereas a hierarchical organization described the pattern of covariances for the shifted pattern best. The finding that performance was more accurate with integrated tones than with streamed tones provides some support for a perceptual-motor facilitation hypothesis.  相似文献   

17.
Twenty-four subjects estimated the duration of 1000 cycle signals of 50, 100, 200, 400, 800 centiseconds whose intensity varied from 20 to 60 db. The four methods of judgment—direct estimation, comparison, production, and reproduction—constituted one significant factor in the estimations. A logical analysis indicates that the “internal clock” provides the best explanation for the significant intensity effect.  相似文献   

18.
The frequency discrimination of a 20-msec test tone was measured for the same subjects in four psychophysical paradigms: a single-interval procedure, a two-alternative forced-choice procedure, a same-different procedure, and a method-of-adjustment procedure. In each paradigm, the 20-msec test tone was preceded or followed by a 500-msec, 800-Hz interfering tone. The interfering tone occurred 50 or 5 msec before the onset of the test tone (forward interference) or 100 or 5 msec after the offset of the test tone (backward interference). In each of the four paradigms and for each of the interference conditions the value of Δf for the test tone was varied symetrically around 800 Hz to obtain an estimate of the frequency discrimination thresholds. In all psychophysical paradigms except for the single-interval procedure, there were small or no significant differences in observers’ frequency discrimination behavior among the interference conditions. The thresholds for Δf from these conditions were approximately the same as those obtained without an interfering tone. In the single-interval task, when the test tone preceded the interfering tone (backward interference) by 5 msec, an increase in the value of Δf required for discrimination over that required in the other conditions was measured. These results suggest that the effect of backward interference on a target tone does depend on psychophysical procedure.  相似文献   

19.
The “Deutsch’s illusion” occurs in most people when a dichotic pair of tones spaced an octave apart is presented repeatedly in alternation, so that when the right ear receives the high tone, the left ear receives the low tone, and vice versa. The illusory percept consists typically in a single low tone heard at one ear alternating with a single high tone heard at the other ear. Here, we investigate whether the frequency interval between the tones and their duration play a role in the perception of the illusion. By testing 74 subjects we demonstrate that the illusion is not confined to tones spaced an octave apart but it is perceivable also with tones separated by a major seventh, a minor ninth, a major ninth, and a minor tenth. Regarding duration, the present results show that the illusion is stronger with tones lasting 500 than 200 ms. The present results suggest that the perceptual mechanisms at the basis of the illusion are not strictly linked to the frequency relationships between the dichotic tones.  相似文献   

20.
Four experiments investigated the effect of pre-stimulus events on judgements of the subjective duration of tones that they preceded. Experiments 1 to 4 used click trains, flickering squares, expanding circles, and white noise as pre-stimulus events and showed that (a) periodic clicks appeared to “speed up” the pacemaker of an internal clock but that the effect wore off over a click-free delay, (b) aperiodic click trains, and visual stimuli in the form of flickering squares and expanding circles, also produced similar increases in estimated tone duration, as did white noise, although its effect was weaker. A fifth experiment examined the effects of periodic flicker on reaction time and showed that, as with periodic clicks in a previous experiment, reaction times were shorter when preceded by flicker than without.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号