首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
选取杭州市122名学前儿童(3~6岁)为被试,以点数比较任务及点数异同任务测量幼儿的近似数量系统敏锐度,以数数测验、基数测验、符号数字知识测验及简单计算来测量幼儿的符号数学能力,以此考察学前儿童近似数量系统敏锐度的发展及与符号数学能力的关系。结果发现:(1)随年龄增长,学前儿童的近似数量加工的敏锐度逐渐提高;(2)点数比较任务与点数异同任务均适合测量学前儿童近似数量系统敏锐度,但儿童完成点数比较任务的正确率要高于点数异同任务的正确率;(3)在抑制控制、短时记忆、工作记忆和言语测验成绩被控制后,根据点数比较任务计算的韦伯系数能显著预测学前儿童的基数和符号数字知识测验分数,总正确率能显著预测学前儿童的数数、基数、符号数字知识测验分数;(4)点数异同任务中只有点数不同试次下的正确率能显著预测学前儿童的符号数字知识测验分数。  相似文献   

2.
Humans possess a developmentally precocious and evolutionarily ancient approximate number system (ANS) whose sensitivity correlates with uniquely human symbolic arithmetic skills. Recent studies suggest that ANS training improves symbolic arithmetic, but such studies may engender performance expectations in their participants that in turn produce the improvement. Here, we assessed 6‐ to 8‐year‐old children's expectations about the effects of numerical and non‐numerical magnitude training, as well as states of satiety and restfulness, in the context of a study linking children's ANS practice to their improved symbolic arithmetic. We found that children did not expect gains in symbolic arithmetic after exercising the ANS, although they did expect gains in ANS acuity after training on any magnitude task. Moreover, children expected gains in symbolic arithmetic after a good night's sleep and their favourite breakfast. Thus, children's improved symbolic arithmetic after ANS training cannot be explained by their expectations about that training.  相似文献   

3.
Various measures have been used to investigate number processing in children, including a number comparison or a number line estimation task. The present study aimed to examine whether and to which extent these different measures of number representation are related to performance on a curriculum‐based standardized mathematics achievement test in kindergarteners, first, second, and sixth graders. Children completed a number comparison task and a number line estimation task with a balanced set of symbolic (Arabic digits) and non‐symbolic (dot patterns) stimuli. Associations with mathematics achievement were observed for the symbolic measures. Although the association with number line estimation was consistent over grades, the association with number comparison was much stronger in kindergarten compared to the other grades. The current data indicate that a good knowledge of the numerical meaning of Arabic digits is important for children's mathematical development and that particularly the access to the numerical meaning of symbolic digits rather than the representation of number per se is important.  相似文献   

4.
Children's understanding of the quantities represented by number words (i.e., cardinality) is a surprisingly protracted but foundational step in their learning of formal mathematics. The development of cardinal knowledge is related to one or two core, inherent systems – the approximate number system (ANS) and the object tracking system (OTS) – but whether these systems act alone, in concert, or antagonistically is debated. Longitudinal assessments of 198 preschool children on OTS, ANS, and cardinality tasks enabled testing of two single‐mechanism (ANS‐only and OTS‐only) and two dual‐mechanism models, controlling for intelligence, executive functions, preliteracy skills, and demographic factors. Measures of both OTS and ANS predicted cardinal knowledge in concert early in the school year, inconsistent with single‐mechanism models. The ANS but not the OTS predicted cardinal knowledge later in the school year as well the acquisition of the cardinal principle, a critical shift in cardinal understanding. The results support a Merge model, whereby both systems initially contribute to children's early mapping of number words to cardinal value, but the role of the OTS diminishes over time while that of the ANS continues to support cardinal knowledge as children come to understand the counting principles.  相似文献   

5.
The numerical ratio effect (NRE) and the Weber fraction (w) are common metrics of the precision of the approximate numbers sense (ANS), a cognitive mechanism suggested to play a role in the development of numerical and arithmetic skills. The task most commonly used to measure the precision of the ANS is the numerical comparison task. Multiple variants of this task have been employed yet it is currently unclear how these affect metrics of ANS acuity, and how these relate to arithmetic achievement. The present study investigates the reliability, validity and relationship to standardized measures of arithmetic fluency of the NRE and w elicited by three variants of the nonsymbolic number comparison task. Results reveal that the strengths of the NRE and w differ between task variants. Moreover, the reliability and validity of the reaction time NRE and the w were generally significant across task variants, although reliability was stronger for w. None of the task variants revealed a correlation between ANS metrics and arithmetic fluency in adults. These results reveal important consistencies across nonsymbolic number comparison tasks, indicating a shared cognitive foundation. However, the relationship between ANS acuity and arithmetic performance remains unclear.  相似文献   

6.
Children's early math skills have been hailed as a powerful predictor of academic success. Disparities in socioeconomic context, however, also have dramatic consequences on children's learning. It is therefore critical to investigate both of these distinct contributors in order to better understand the early foundations of children's academic outcomes. This study tests an integrated model of children's developing math ability so as to (1) identify the specific skills and abilities most clearly linked to early math achievement and (2) measure the influence of children's socioeconomic context on each of these skills. We first evaluated the early vocabulary, number word knowledge (knower level), and Approximate Number System (ANS) acuity of a diverse group of preschoolers. Then, approximately 1 year later as they entered Kindergarten, we administered a test of early math achievement. We find that children's early language (general vocabulary and number word knowledge) fully mediates the relationship between parent education and math ability. Additionally, number word knowledge mediates the relationship between ANS acuity and early math. We argue that increased focus on number word knowledge, as well as general vocabulary, may help to minimize disparities in math ability as children enter kindergarten. We also highlight the role of parent education on children's learning and note that this may be an important locus for intervention.  相似文献   

7.
Recent research reveals a link between individual differences in mathematics achievement and performance on tasks that activate the approximate number system (ANS): a primitive cognitive system shared by diverse animal species and by humans of all ages. Here we used a brief experimental paradigm to test one causal hypothesis suggested by this relationship: activation of the ANS may enhance children’s performance of symbolic arithmetic. Over 2 experiments, children who briefly practiced tasks that engaged primitive approximate numerical quantities performed better on subsequent exact, symbolic arithmetic problems than did children given other tasks involving comparison and manipulation of non-numerical magnitudes (brightness and length). The practice effect appeared specific to mathematics, as no differences between groups were observed on a comparable sentence completion task. These results move beyond correlational research and provide evidence that the exercise of non-symbolic numerical processes can enhance children’s performance of symbolic mathematics.  相似文献   

8.
Recent findings by Libertus, Feigenson, and Halberda (2011) suggest that there is an association between the acuity of young children's approximate number system (ANS) and their mathematics ability before exposure to instruction in formal schooling. The present study examined the generalizability and validity of these findings in a sample of preschoolers from low‐income homes. Children attending Head Start (= 103) completed measures to assess ANS acuity, mathematics ability, receptive vocabulary, and inhibitory control. Results showed only a weak association between ANS acuity and mathematics ability that was reduced to non‐significance when controlling for a direct measure of receptive vocabulary. Results also revealed that inhibitory control plays an important role in the relation between ANS acuity and mathematics ability. Specifically, ANS acuity accounted for significant variance in mathematics ability over and above receptive vocabulary, but only for ANS acuity trials in which surface area conflicted with numerosity. Moreover, this association became non‐significant when controlling for inhibitory control. These results suggest that early mathematical experiences prior to formal schooling may influence the strength of the association between ANS acuity and mathematics ability and that inhibitory control may drive that association in young children.  相似文献   

9.
One foundation of numerical cognition is that discrimination accuracy depends on the proportional difference between compared values, closely following the Weber–Fechner discrimination law. Performance in non-symbolic numerical discrimination is used to calculate individual Weber fraction, a measure of relative acuity of the approximate number system (ANS). Individual Weber fraction is linked to symbolic arithmetic skills and long-term educational and economic outcomes. The present findings suggest that numerical discrimination performance depends on both the proportional difference and absolute value, deviating from the Weber–Fechner law. The effect of absolute value is predicted via computational model based on the neural correlates of numerical perception. Specifically, that the neural coding “noise” varies across corresponding numerosities. A computational model using firing rate variation based on neural data demonstrates a significant interaction between ratio difference and absolute value in predicting numerical discriminability. We find that both behavioral and computational data show an interaction between ratio difference and absolute value on numerical discrimination accuracy. These results further suggest a reexamination of the mechanisms involved in non-symbolic numerical discrimination, how researchers may measure individual performance, and what outcomes performance may predict.  相似文献   

10.
In the present study we examined whether children with Developmental Dyscalculia (DD) exhibit a deficit in the so‐called ‘Approximate Number System’ (ANS). To do so, we examined a group of elementary school children who demonstrated persistent low math achievement over 4 years and compared them to typically developing (TD), aged‐matched controls. The integrity of the ANS was measured using the Panamath ( www.panamath.org ) non‐symbolic numerical discrimination test. Children with DD demonstrated imprecise ANS acuity indexed by larger Weber fraction (w) compared to TD controls. Given recent findings showing that non‐symbolic numerical discrimination is affected by visual parameters, we went further and investigated whether children performed differently on trials on which number of dots and their overall area were either congruent or incongruent with each other. This analysis revealed that differences in w were only found between DD and TD children on the incongruent trials. In addition, visuo‐spatial working memory strongly predicts individual differences in ANS acuity (w) during the incongruent trials. Thus the purported ANS deficit in DD can be explained by a difficulty in extracting number from an array of dots when area is anti‐correlated with number. These data highlight the role of visuo‐spatial working memory during the extraction process, and demonstrate that close attention needs to be paid to perceptual processes invoked by tasks thought to represent measures of the ANS.  相似文献   

11.
Recent theories in numerical cognition propose the existence of an approximate number system (ANS) that supports the representation and processing of quantity information without symbols. It has been claimed that this system is present in infants, children, and adults, that it supports learning of symbolic mathematics, and that correctly harnessing the system during tuition will lead to educational benefits. Various experimental tasks have been used to investigate individuals' ANSs, and it has been assumed that these tasks measure the same system. We tested the relationship across six measures of the ANS. Surprisingly, despite typical performance on each task, adult participants' performances across the tasks were not correlated, and estimates of the acuity of individuals' ANSs from different tasks were unrelated. These results highlight methodological issues with tasks typically used to measure the ANS and call into question claims that individuals use a single system to complete all these tasks.  相似文献   

12.
Whether our general numerical skills and the mathematical knowledge that we acquire at school are entwined is a debated issue, which many researchers are still striving to investigate. The findings reported in the literature are actually inconsistent; some studies emphasized the existence of a relationship between the acuity of the Approximate Number System (ANS) and arithmetic competence, while some others did not observe any significant correlation. One potential explanation of the discrepancy might stem from the evaluation of the ANS itself. In the present study, we correlated two measures used to index ANS acuity with arithmetic performance. These measures were the Weber fraction (w), computed from a numerical comparison task and the coefficient of variation (CV), computed from a numerical estimation task. Arithmetic performance correlated with estimation CV but not with comparison w. We further investigated the meaning of this result by taking the relationship between w and CV into account. We expected a tight relation as both these measures are believed to assess ANS acuity. Crucially, however, w and CV did not correlate with each other. Moreover, the value of w was modulated by the congruity of the relation between numerical magnitude and non-numerical visual cues, potentially accounting for the lack of correlation between the measures. Our findings thus challenge the overuse of w to assess ANS acuity and more generally put into question the relevance of correlating this measure with arithmetic without any deeper understanding of what they are really indexing.  相似文献   

13.
Although growing evidence suggests a link between children's math skills and their ability to estimate numerical quantities using the approximate number system (ANS), little is known about the sources underlying individual differences in ANS acuity and their relation with specific mathematical skills. To examine the role of intergenerational transmission of these abilities from parents to children, the current study assessed the ANS acuities and math abilities of 54 children (5–8 years old) and their parents, as well as parents' expectations about children's math skills. Children's ANS acuity positively correlated with their parents' ANS acuity, and children's math abilities were predicted by unique combinations of parents' ANS acuity and math ability depending on the specific math skill in question. These findings provide the first evidence of intergenerational transmission of an unlearned, non‐verbal numerical competence and are an important step toward understanding the multifaceted parental influences on children's math abilities.  相似文献   

14.
Previous research shows a correlation between individual differences in people's school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and with non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants' ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children's math ability and vocabulary size prior to the onset of formal math instruction. We found that children's ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life.  相似文献   

15.
Approximate number sense (ANS) acuity refers to the ability to non-symbolically recognize, estimate and operate upon large numerosities. ANS acuity has been reported to be correlated with math achievement in children and adolescents. However, reports of this relationship in adults have been inconsistent. The present study aimed to resolve the inconsistency in the relationship between adults’ ANS acuity and math achievement by contrasting between different kinds of mathematical problem solving. We hypothesized that the correlation between ANS acuity mathematical performance would be stronger when deep quantitative processing is required during problem solving. In Experiment 1, ANS acuity was correlated with Mathematical Reasoning but not Directed Calculation performance. In Experiment 2, ANS acuity was correlated with Two-digit Subtraction (but not Addition) performance only when Regrouping (i.e., borrowing) was required. The results from two experiments demonstrated that ANS acuity was correlated with mathematical performance only when problem solving involved effortful, quantitative processing that goes beyond automatized, routinized arithmetic. In addition, ANS acuity was distinguishable from Area acuity regarding its unique relationship with math achievement, which was unconfounded by the influence of demographic variables and fluid intelligence. Overall, the present results help resolve the inconsistency in previous reports of the correlation between ANS acuity and math achievement in adults.  相似文献   

16.
Recent theories in numerical cognition propose the existence of an approximate number system (ANS) that supports the representation and processing of quantity information without symbols. It has been claimed that this system is present in infants, children, and adults, that it supports learning of symbolic mathematics, and that correctly harnessing the system during tuition will lead to educational benefits. Various experimental tasks have been used to investigate individuals' ANSs, and it has been assumed that these tasks measure the same system. We tested the relationship across six measures of the ANS. Surprisingly, despite typical performance on each task, adult participants' performances across the tasks were not correlated, and estimates of the acuity of individuals' ANSs from different tasks were unrelated. These results highlight methodological issues with tasks typically used to measure the ANS and call into question claims that individuals use a single system to complete all these tasks.  相似文献   

17.
Although everyone perceives approximate numerosities, some people make more accurate estimates than others. The accuracy of this estimation is called approximate number system (ANS) acuity. Recently, several studies have reported that individual differences in young children's ANS acuity are correlated with their knowledge of exact numbers such as the word ‘six’ (Mussolin et al., 2012, Trends Neurosci. Educ., 1, 21; Shusterman et al., 2011, Connecting early number word knowledge and approximate number system acuity; Wagner & Johnson, 2011, Cognition, 119, 10; see also Abreu‐Mendoza et al., 2013, Front. Psychol., 4, 1). This study argues that this correlation should not be trusted. It seems to be an artefact of the procedure used to assess ANS acuity in children. The correlation arises because (1) some experimental designs inadvertently allow children to answer correctly based on the size (rather than the number) of dots in the display and/or (2) young children with little exact‐number knowledge may not understand the phrase ‘more dots’ to mean numerically more. When the task is modified to make sure that children respond on the basis of numerosity, the correlation between ANS acuity and exact‐number knowledge in normally developing children disappears.  相似文献   

18.
The study used Bayesian and Frequentist methods to investigate whether the roles of linguistic, quantitative, and spatial attention skills are distinct in children's acquisition of reading and math. A sample of 175 Chinese kindergarteners was tested with measures of linguistic skills (phonological awareness and phonological memory), quantitative knowledge (number line task, symbolic digit comparison, and non-symbolic number estimation), spatial attention skills (visual span, mental rotation, and visual search), word reading, and calculation. After statistically controlling for age and nonverbal intelligence, phonological awareness and digit comparison performance explained unique variance in both math and reading. Moreover, number line estimation was specifically important for math, while phonological memory was specifically essential for reading. These findings highlight the possibility of developing early screening tools with different cognitive measures for children at risk of learning disabilities in reading and/or math.  相似文献   

19.
In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children’s performances on these basic cognitive number processing tasks were explicitly contrasted to investigate which of them is the best predictor of their future mathematical abilities. Math achievement was measured with a timed arithmetic test and with a general curriculum-based math test to address the additional question of whether the predictive association between the basic numerical abilities and mathematics achievement is dependent on which math test is used. Results revealed that performance on both mathematics achievement tests was best predicted by how well children compared digits. In addition, an association between performance on the symbolic number line estimation task and math achievement scores for the general curriculum-based math test measuring a broader spectrum of skills was found. Together, these results emphasize the importance of learning experiences with symbols for later math abilities.  相似文献   

20.
The relation between the approximate number system (ANS) and symbolic number processing skills remains unclear. Some theories assume that children acquire the numerical meaning of symbols by mapping them onto the preexisting ANS. Others suggest that in addition to the ANS, children also develop a separate, exact representational system for symbolic number processing. In the current study, we contribute to this debate by investigating whether the nonsymbolic number processing of kindergarteners is predictive for symbolic number processing. Results revealed no association between the accuracy of the kindergarteners on a nonsymbolic number comparison task and their performance on the symbolic comparison task six months later, suggesting that there are two distinct representational systems for the ANS and numerical symbols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号