首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to examine Kosslyn's (1987) claim that the left hemisphere (LH) is specialized for the computation of categorical spatial representations and that the right hemisphere (RH) is specialized for the computation of coordinate spatial representations. Categorical representations involve making judgements about the relative position of the components of a visual stimulus (e.g., whether one component is above/below another). Coordinate representations involve calibrating absolute distances between the components of a visual stimulus (e.g., whether one component is within 5 mm of another). Thirty-two male and 32 female undergraduates were administered two versions of a categorical or a coordinate task over three blocks of 36 trials. Within each block, items were presented to the right visual field-left hemisphere (RVF-LH), the left visual field-right hemisphere (LVF-RH), or a centralized position. Overall, results were more supportive of Kosslyn's assertions concerning the role played by the RH in the computation of spatial representations. Specifically, subjects displayed an LVF-RH advantage when performing both versions of the coordinate task. The LVF-RH advantage on the coordinate task, however, was confirmed to the first block of trials. Finally, it was found that males were more likely than females to display faster reaction times (RTs) on coordinate tasks, slower RTs on categorical tasks, and an LVF-RH advantage in computing coordinate tasks.  相似文献   

2.
The hypothesis that the two cerebral hemispheres are specialized for processing different visual spatial frequencies was investigated in three experiments. No differences between the left and right visual fields were found for: (1) contrast-sensitivity functions measured binocularly with vertical gratings ranging from 0.5 to 12 cycles per degree (cpd); (2) visible persistence durations for 1- and 10-cpd gratings measured with a stimulus alternation method; and (3) accuracy (d') and reaction times to correctly identify digitally filtered letters as targets (L or H) or nontargets (T or F). One significant difference, however, was found: In Experiment 3, a higher decision criterion (beta) was used when filtered letters were identified in the right visual field than when they were identified in the left. The letters were filtered with annular, 1-octave band-pass filters with center spatial frequencies of 1, 2, 4, 8, and 16 cpd. Combining four center frequencies with three letter sizes (0.5 degrees, 1 degree, and 2 degrees high) made some stimuli equivalent in distal spatial frequency (cycles per object) and some equivalent in proximal spatial frequency (cycles per degree). The effective stimulus in the third experiment seemed to be proximal spatial frequency (cycles per degree) not distal (cycles per object). We conclude that each cerebral hemisphere processes visual spatial frequency information with equal accuracy but that different decision rules are used.  相似文献   

3.
This study investigates whether the right hemisphere has more flexible contrast gain control settings for the identification of spatial frequency. Right-handed participants identified 1 and 9 cycles per degree sinusoidal gratings presented either to the left visual field-right hemisphere (LVF-RH) or the right visual field-left hemisphere (RVF-LH). When luminance contrast was randomized across a wide range (20-60%), performance gradually improved with contrast in the LVF-RH. Conversely, performance in the RVF-LH was disrupted and saturated for 20 and 60% of contrast, respectively, leading to a LVF-RH advantage for these contrast levels. When contrast was blocked or randomized for a smaller range (30-50%), the LVF-RH advantage was diminished. Flexible contrast gain control is needed when contrast is randomized across a wide range, but not when it is blocked or randomized across a smaller range. The results therefore suggest that the right hemisphere is able to process spatial frequency information across a wider range of contrast levels than is the left hemisphere.  相似文献   

4.
This study investigated functional differences in the processing of visual temporal information between the left and right hemispheres (LH and RH). Participants indicated whether or not a checkerboard pattern contained a temporal gap lasting between 10 and 40 ms. When the stimulus contained a temporal signal (i.e. a gap), responses were more accurate for the right visual field-left hemisphere (RVF-LH) than for the left visual field-right hemisphere (LVF-RH). This RVF-LH advantage was larger for the shorter gap durations (Experiments 1 and 2), suggesting that the LH has finer temporal resolution than the RH, and is efficient for transient detection. In contrast, for noise trials (i.e. trial without temporal signals), there was a LVF-RH advantage. This LVF-RH advantage was observed when the entire stimulus duration was long (240 ms, Experiment 1), but was eliminated when the duration was short (120 ms, Experiment 2). In Experiment 3, where the gap was placed toward the end of the stimulus presentation, a LVF-RH advantage was found for noise trials whereas the RVF-LH advantage was eliminated for signal trials. It is likely that participants needed to monitor the stimulus for a longer period of time when the gap was absent (i.e. noise trials) or was placed toward the end of the presentation. The RH may therefore be more efficient in the sustained monitoring of visual temporal information whereas the LH is more efficient for transient detection.  相似文献   

5.
A visual search paradigm was employed to examine hemispheric serial and parallel processing. Stimulus arrays containing 4, 9, or 16 elements were tachistoscopically presented to the right visual field-left hemisphere (RVF-LH) or left visual field-right hemisphere (LVF-RH). Subjects judged whether all of the elements within an array were physically the same (all X's) or whether one (O) was different from the rest. Left hemisphere presentations were processed more quickly and accurately than LVF-RH presentations for all stimulus conditions. As the number of array elements increased, more errors and longer response times were obtained for different stimulus items whereas fewer errors and somewhat shorter response times were obtained for same stimulus items. These and previous results suggest that the left hemisphere obtains an advantage for visual search because of that hemisphere's superiority for fine-grained feature analysis rather than because of a fundamental hemispheric serial/parallel processing dichotomy.  相似文献   

6.
Visual field differences in spatial frequency discrimination   总被引:3,自引:0,他引:3  
Subjects discriminated between sine-wave gratings that differed by either +/-0.125 octaves (small difference) or +/-1.0 octaves (large difference). Baseline stimuli consisted of either 1.0 or 4.0 cycles per degree gratings. A left visual field advantage was obtained for the small difference in frequency, with no visual field advantages for the large difference in frequency. Similarly, moderate support for right versus left visual field advantages in processing high versus low spatial frequencies was found, although these interactions were not statistically significant. The results are discussed in light of Kosslyn's (1987) categorical and coordinate framework.  相似文献   

7.
Visual field effects in the discrimination of sine-wave gratings   总被引:2,自引:0,他引:2  
The time needed to decide whether the second of two successively presented sinusoidal gratings was of a higher or lower spatial frequency than the first was measured for spatial frequencies of 1, 2, 4, 8, and 12 cycles per degree (cpd) presented in either the left visual field (LVF) or right visual field (RVF). A LVF advantage was found for discriminating within the low-spatial-frequency range (i.e., 1 and 2 cpd), whereas a RVF advantage was found for discriminating within the high-spatial-frequency range (i.e., 4-12 cpd). These findings support the conclusion that hemispheric asymmetries in the processing of gratings arise when comparisons are made between the output of spatial-frequency channels.  相似文献   

8.
Response latencies to the onset, offset, and contrast reversal of sinusoidal gratings over a range of spatial frequencies were measured. For gratings of constant physical contrast, RT was monotonically related to spatial frequency regardless of presentation mode. Comparison of RTs to 1.0- and 9.0-cycle/deg gratings adjusted to equal apparent contrast showed that the RT shifts cannot be directly attributed to contrast sensitivity differences. It is concluded that spatial-frequency-dependent processing delays occur regardless of which temporal property of the stimulus the subject must respond to.  相似文献   

9.
Observers indicated whether two successively presented drawings of faces were identical or differed in one feature (hair, eyes, mouth, jaw). The first face of each pair was presented at the fixation point and the second was presented to the left visual field-right hemisphere (LVF-RH), right visual field-left hemisphere (RVF-LH), or to both visual fields simultaneously (BILATERAL). On DIFFERENT trials the RT of correct responses depended on which feature differed and the pattern of feature location effects was significantly different on LVF-RH and RVF-LH trials. On BILATERAL trials the feature location effect was identical to that obtained on RVF-LH trials and significantly different from that obtained on LVF-RH trials. In addition, the percentage of errors and RT of correct responses were both higher on BILATERAL trials than on unilateral trials. Implications of these results are considered for the concept of "metacontrol" in neurologically normal humans and for models of interhemispheric interaction.  相似文献   

10.
Three experiments examined the effects of stimulus duration, retinal eccentricity, and visual noise on the processing of human faces presented to the left visual field/right hemisphere (LVF-RH) and right visual field/left hemisphere (RVF-LH). In Experiment 1 observers identified which of 10 similar male faces was presented on a screen. The single face was presented for 10, 55, or 100 ms at 1 degree, 4 degrees, or 9 degrees of visual angle to the left or right of fixation. Decreasing stimulus duration and increasing retinal eccentricity lowered face recognition. The effect of duration was the same for LVF-RH and RVF-LH trials, but the detrimental effect of increasing retinal eccentricity was larger on LVF-RH trials than on RVF-LH trials. In Experiment 2 observers indicated whether a single face from this same set was a member of a memorized set of five positive faces. The probe face on each trial was presented alone or embedded in visual noise. Visual noise increased the error rate more on LVF-RH trials than on RVF-LH trials. This effect was replicated in Experiment 3, which also required observers to make a much easier discrimination between male and female faces. In the male/female task visual noise tended to impair performance more on RVF-LH trials than on LVF-RH trials, opposite the effect for the male/male task. These results are discussed in terms of hemispheric asymmetry for global versus local features of faces, the level of feature analysis demanded by a task, and the level of feature analysis most disrupted by perceptual degradation.  相似文献   

11.
Right-handed Ss identified consonant-vowel-consonant (CVC) nonsense syllables presented tachistoscopically. The CVC on each trial was presented to the left visual field-right hemisphere (LVF-RH), to the right visual field-left hemisphere (RVF-LH), or the same CVC was presented to both visual fields (bilateral presentation). When recognition was incorrect, the pattern of errors was qualitatively different on LVF-RH and RVF-LH trials, suggesting that each cerebral hemisphere has its own preferred mode of processing the CVC stimuli. The qualitative pattern of errors on bilateral trials was identical to that obtained on LVF-RH trials. The bilateral results are described well by a model that assumes the mode of processing characteristic of the RH dominates on bilateral trials but is applied to both the LVF-RH and RVF-LH stimuli.  相似文献   

12.
Recent research on the division of processing between the two cerebral hemispheres has often employed two concurrent tasks to investigate the dynamic nature of hemispheric asymmetries. The experiment reported here explored the effects of two concurrent high-level cognitive tasks (memory retention and semantic categorization) on the direction and magnitude of hemispheric differences in the processing of words and pictures. Subjects were required to categorize words and pictures presented to either the left visual field-right hemisphere (LVF-RH) or the right visual field-left hemisphere (RVF-LH). The categorization could be performed while holding either verbal material in memory (digit span), pictorial material in memory (serial nonsense figure recognition), or with no concurrent memory task. The effects produced hemisphere-specific, material-nonspecific interference. The verbal task removed a RVF-LH advantage at word categorization and enhanced a LVF-RH advantage on picture categorization; the pictorial task interfered with picture categorization in the LVF-RH, while enhancing a RVF-LH advantage at word categorization. The results are discussed in terms of multiple resource models of hemisphere function, capacity limitations, and the functional locus of processing required to produce various dynamic hemispheric effects.  相似文献   

13.
Right-handed participants performed simple visual judgments on nonverbal stimuli presented either to the left visual field-right hemisphere (LVF-RH) or to the right visual field-left hemisphere (RVF-LH). The stimuli were exposed for 40-120 msec, followed by a backward mask. When the stimuli were presented against a green background, an RVF-LH advantage was observed for the shortest exposure duration. This result supports the notion that the LH has finer temporal resolution than the RH. Imposition of a red background disrupted performance and eliminated the RVF-LH advantage for the shortest exposure duration. Because the red background attenuates functions of the magnocellular pathway, these results suggest that the magnocellular pathway contributes to the LH advantage for fine temporal resolution.  相似文献   

14.
This study examined hemispheric asymmetry for concurrent processing of object and spatial information. Participants viewed two successive stimuli, each of which consisted of two digits and two pictures that were randomly located and judged them as identical or different. A sample stimulus was presented in a central visual field, followed by a matching stimulus presented briefly in a left or right visual field. The matching stimuli were different from the sample stimuli with respect to the object (digit or picture) or spatial (locations or distances of items) aspect. No visual field asymmetry was found in the detection of object change. However, a left visual field advantage was found in the detection of spatial change. This result can be explained by the double filtering by frequency theory of Ivry and Robertson, who asserted that the left hemisphere has a bias for processing information contained in relatively high spatial frequencies whereas the right hemisphere has a bias for processing information contained in relatively low spatial frequencies. Based upon this evidence, the importance of interhemispheric integration for visual scene perception is discussed.  相似文献   

15.
Observers indicated whether a single probe letter presented to the left visual field/right hemisphere (LVF-RH) or to the right visual field/left hemisphere (RVF-LH) was contained in a memory set of 2, 3, 4, or 5 letters. For positive trials, the increase in reaction time caused by perceptually degrading the probe letter became progressively larger as memory set size became larger when the probe was presented to the LVF-RH but not when the probe was presented to the RVF-LH. These results were obtained regardless of whether the case of the probe letter varied randomly (Experiment 1) or only capital letters were used (Experiment 2). The results on LVF-RH trials suggest a relatively visuospatial memory comparison process, whereas the results on RVF-LH trials suggest a more abstract memory comparison process. In addition to these effects, the intercept of the memory set size function was lower on LVF-RH trials than on RVF-LH trials when the probe letter was perceptually degraded, consistent with the hypothesis that the right hemisphere is more efficient than the left at early visuospatial processes. Perhaps it is this efficiency at early visuospatial processes that produces the bias toward visuospatial memory comparison on LVF-RH trials.  相似文献   

16.
The processing of sine-wave gratings presented to the left and right visual fields was examined in four experiments. Subjects were required either to detect the presence of a grating (Experiments 1 and 2) or to identify the spatial frequency of a grating (Experiments 3 and 4). Orthogonally to this, the stimuli were presented either at threshold levels of contrast (Experiments 1 and 3) or at suprathreshold levels (Experiments 2 and 4). Visual field and spatial frequency interacted when the task required identification of spatial frequency, but not when it required only stimulus detection. Regardless of contrast level (threshold, suprathreshold), high-frequency gratings were identified more readily in the right visual field (left hemisphere), whereas low-frequency gratings showed no visual field difference (Experiment 3) or were identified more readily in the left visual field (right hemisphere) (Experiment 4). Thus, hemispheric asymmetries in the processing of spatial frequencies depend on the task. These results support Sergent’s (1982) spatial frequency hypothesis, but only when the computational demands of the task exceed those required for the simple detection of the stimuli.  相似文献   

17.
Observers classified sine-wave and square-wave gratings on the basis of fundamental frequency (Are the bars wide or narrow?) or on the basis of higher harmonic frequencies (Are the bars sharp or fuzzy?). Stimuli were presented in either the left (LVF) or right (RVF) visual field. When the classification was made on the basis of the fundamental frequencies (1 or 3 c/deg), there was a LVF/right hemisphere advantage. However, when the classification was on the basis of a sharp/fuzzy distinction which involved searching for the higher harmonic frequencies, then a RVF/left hemisphere advantage was found.  相似文献   

18.
We employed both simple and choice reaction time (RT) paradigms in which the subjects were required to respond to 3.0 cycles per degree (c/d) square-wave gratings presented to one eye, while checkerboard masks were presented at various stimulus-onset asynchronies to the other eye. No masking was evident using the simple RT paradigm, but with the choice RT task, checkerboard masks presented to the contralateral eye of three subjects resulted in substantial decreases in response speed when the test preceded the mask by stimulus-onset asynchronies of 25 to 75 ms. Masks that contained lower fundamental spatial frequencies (1.0 c/d) than the target were more effective than masks containing fundamental spatial frequencies (6.0 c/d) higher than the target, while masks that contained fundamental components identical to those in the target (3.0 c/d) produced maximum masking. The results offer support for the sustained-transient theory of visual processing and validate RT as a technique for examining spatio-temporal factors in masking.  相似文献   

19.
赵益  何东军 《心理科学》2021,(3):530-536
为了研究眼跳的双相调节理论是否适用于人类的视觉系统,本研究测量了人类被试对分别呈现在三种眼跳时间段(基线、眼跳抑制和眼跳增强)内的光栅的朝向辨别准确率。研究发现:相对于光栅呈现在基线时间段内,被试对呈现在抑制(或增强)时间段内的光栅的朝向辨别准确率显著地更低(或更高)(实验1);另外,只有使用低或中等空间频率光栅作为测试刺激时,才有这种双相调节作用(实验2)。这些结果表明:人类的视觉系统在眼跳过程中存在双相调节机制,并且这种双相调节机制具有刺激选择性。  相似文献   

20.
Divided visual field techniques were used to investigate hemispheric asymmetries for (a) the threshold of fusion of two flashes of light and (b) the detection of simultaneous versus successive events for a group of normal, right-handed adults. A signal detection analysis revealed a higher level of accuracy for the right visual field-left hemisphere (RVF-LH) relative to the left visual field-right hemisphere (LVF-RH) for both tasks. These results were interpreted in terms of a general left-hemisphere advantage for the discrimination of fine temporal events. The implications of these results for models of temporary asymmetry that describe the left hemisphere's advantage in terms of an exclusive specialization or relative superiority are then discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号