首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors compared the force and time endpoint accuracy of goal-directed ipsilateral upper and lower limb isometric contractions and determined the components of motor performance that can be transferred from 1 limb to the other after practice. Ten young adults (27.4 +/- 4.4 years) performed 100 trials that involved their matching peak force to a force-time target with ankle dorsiflexor and elbow flexor muscles. The peak force error and variability was greater for ankle dorsiflexor contractions than for elbow flexor contractions, whereas the timing error and variability did not significantly vary with limb. There was transfer of timing, but not force, of motor output between upper and lower limbs. The timing error of the elbow flexor contractions decreased by 23% when those contractions were preceded by ankle dorsiflexor contractions, and the timing error of the ankle dorsiflexors decreased by 24% when those contractions were preceded by elbow flexor contractions. These finding therefore suggest that timing of an aiming isometric contraction may be organized at a common part of the brain for the upper and lower limbs.  相似文献   

2.
The visual correction employed during isometric contractions of large proximal muscles contributes variability to the descending command and alters fluctuations in muscle force. This study explored the contribution of visuomotor correction to isometric force fluctuations for the more distal dorsiflexor (DF) and plantarflexor (PF) muscles of the ankle. Twenty-one healthy adults performed steady isometric contractions with the DF and PF muscles both with (VIS) and without (NOVIS) visual feedback of the force. The target forces exerted ranged from 2.5% to 80% MVC. The standard deviation (SD) and coefficient of variation (CV) of force was measured from the detrended (drift removed) VIS and NOVIS steadiness trials. Removal of VIS reduced the CV of force by 19% overall. The reduction in fluctuations without VIS was significant across a large range of target forces and was more consistent for the PF than the DF muscles. Thus, visuomotor correction contributes to the variability of force during isometric contractions of the ankle dorsiflexors and plantarflexors.  相似文献   

3.
In an experiment, we examined the effect of intermittency (from 25.6 Hz to 0.2 Hz) of visual information on continuous isometric force production as a function of force level (5%, 10%, 25%, and 50% of maximal voluntary contraction [MVC]). The amount of force variability decreased and the irregularity of force output increased as a function of increased visual intermittency rate. Vision was found to have an influence on the frequency structure of force output up to 12 Hz, and the 25% MVC force level had more high-frequency modulations with higher rates of visual information. The effective use of intermittent visual information is mediated nonlinearly by force level, and there are multiple time scales of visual control (range, approximately 0 - 12 Hz) that are postulated to be a function of both feedback and feedforward control processes.  相似文献   

4.
In the present 3 experiments, the authors examined the hypothesis, derived from information theory, that increases in the variability of motor responses result from increases in perceptual-motor noise. Three different groups of participants (Ns = 10, 9, and 10, respectively, in Experiments 1, 2, and 3) produced continuous isometric force under either low, intermediate, or high target force levels. When considered together, the results showed that force variability (SD) increased exponentially as a function of force level. However, an index of information transmission (M/SD), as well as measures of noise in both the time (approximate entropy) and the frequency (power spectrum) domains, changed according to an inverted-U-shaped function over the range of force levels. The findings provide further evidence that increased information transmission is related to increases, and not to decreases, in the noisiness of the structure of force output.  相似文献   

5.
In the present 3 experiments, the authors examined the hypothesis, derived from information theory, that increases in the variability of motor responses result from increases in perceptual-motor noise. Three different groups of participants (Ns = 10, 9, and 10, respectively, in Experiments 1, 2, and 3) produced continuous isometric force under either low, intermediate, or high target force levels. When considered together, the results showed that force variability (SD) increased exponentially as a function of force level. However, an index of information transmission (M/SD), as well as measures of noise in both the time (approximate entropy) and the frequency (power spectrum) domains, changed according to an inverted-U-shaped function over the range of force levels. The findings provide further evidence that increased information transmission is related to increases, and not to decreases, in the noisiness of the structure of force output.  相似文献   

6.
The authors examined force control in oral and manual effectors as a function of sensory feedback (i.e., visual and auditory). Participants produced constant isometric force via index finger flexion and lower lip elevation to 2 force levels (10% and 20% maximal voluntary contraction) and received either online visual or online auditory feedback. Mean, standard deviation, and coefficient of variation of force output were used to quantify the magnitude of force variability. Power spectral measures and approximate entropy of force output were calculated to quantify the structure of force variability. Overall, it was found that the oral effector conditions were more variable (e.g., coefficient of variation) than the manual effector conditions regardless of sensory feedback. No effector differences were found for the structure of force variability with visual or auditory feedback. Oral and manual force control appears to involve different control mechanisms regulating continuous force production in the presence of visual or auditory feedback.  相似文献   

7.
It is known that electromyostimulation (EMS) alone or superimposed over voluntary contraction (EV) can effectively improve muscle strength. However, the effect of this type of training on the ability to control force production at submaximal levels is unknown. The authors examined the effects of EV training on steadiness in force production of knee extensors and flexors in older adults. Forty participants, including 20 men and 20 women, 60-77 years of age, were randomly allocated into a control group (CG) and an electromyostimulation superimposed over voluntary contraction (EVG) group. The EVG performed 30 bilateral isometric knee extension and flexion contractions per session, 3 training sessions per week, for 6 weeks. The variations in force production, expressed in absolute (standard deviation [SD]) and relative (coefficient of variation [CV]) terms, were assessed in isometric contractions at 5%, 15% and 25% maximal voluntary contraction (MVC) levels. Results indicated that MVC increased in knee extension and flexion in EVG (p < .05) after the training; steadiness CV also improved at 15% MVC in knee flexion (p < .05) but no significant changes were found in knee extension and steadiness SD. The training-induced changes in MVC were not correlated to steadiness CV that might indicate different mechanisms underlying these adaptations.  相似文献   

8.
It is known that electromyostimulation (EMS) alone or superimposed over voluntary contraction (EV) can effectively improve muscle strength. However, the effect of this type of training on the ability to control force production at submaximal levels is unknown. The authors examined the effects of EV training on steadiness in force production of knee extensors and flexors in older adults. Forty participants, including 20 men and 20 women, 60–77 years of age, were randomly allocated into a control group (CG) and an electromyostimulation superimposed over voluntary contraction (EVG) group. The EVG performed 30 bilateral isometric knee extension and flexion contractions per session, 3 training sessions per week, for 6 weeks. The variations in force production, expressed in absolute (standard deviation [SD]) and relative (coefficient of variation [CV]) terms, were assessed in isometric contractions at 5%, 15% and 25% maximal voluntary contraction (MVC) levels. Results indicated that MVC increased in knee extension and flexion in EVG (p < .05) after the training; steadiness CV also improved at 15% MVC in knee flexion (p < .05) but no significant changes were found in knee extension and steadiness SD. The training-induced changes in MVC were not correlated to steadiness CV that might indicate different mechanisms underlying these adaptations.  相似文献   

9.
In 3 experiments, the authors examined movement space-time variability as a function of the force-time properties of the initial impulse in a movement timing task. In the range of motion and movement time task conditions, peak force, initial rate of force, and force duration were manipulated either independently or in combination across a range of parameter values. The findings showed that (a) impulse variability is predicted well by the elaboration of the isometric force variability scaling functions of L. G. Carlton, K. H. Kim, Y. T. Liu, and K. M. Newell (1993) to movement, and (b) the movement spatial and temporal outcome variability are complementary and well predicted by an equation treating the variance of force and time in Newton's 2nd law as independent random variables. Collectively, the findings suggest that movement outcome variability is the product of a coherent space-time function that is driven by the nonlinear scaling of the force-time properties of the initial impulse.  相似文献   

10.
Sixty-three children between 5 and 12 years of age and 15 adults performed a unimanual and a bimanual isometric force task. The performance of the preferred hand in the unimanual task was compared to the performance of the preferred hand in the bimanual task. It was hypothesized that in the bimanual task the absolute error will be higher, there will be more irregularity and the participants will need more time due to the additional effort from the central nervous system, especially with respect to the communication between the hemispheres. Furthermore, in younger children bimanual force variability was expected to be higher due to developmental aspects concerning callosal maturation and attention. It was found that with respect to force generation the preferred hand was not affected by bilateral isometric force generation, but with respect to force regulation it was. The coefficient of variation (CV) of the force was 34% larger in the bimanual task as compared to the unimanual task. For the time to target force, the increase was 28%. With repetition of the trials the CV decreased in the bimanual task, but only in the youngest age group. During development there was no change in absolute error, yet there was a major reduction in force variability in the bimanual task. It is suggested that improvement in interhemispheric communication and in the ability to focus attention plays a role in the decrease in variability with age.  相似文献   

11.
The aim of this study was to test the effect of fatigue of the knee extensors muscles on bilateral force control accuracy, variability, and coordination in the presence and absence of visual feedback. Twenty-two young physically active subjects (18 males, 4 females) were divided into two groups and performed 210 submaximal sustained bilateral isometric contractions of knee extensors muscles with and without visual feedback. One group performed a symmetrical task—both legs were set at identical positions (60° knee flexion)—while the other group performed an asymmetrical task (60° and 30° knee flexion). We used the framework of the uncontrolled manifold hypothesis to quantify two variance components: one of them did not change total force (VUCM), while the other did (VORT). Performance of bilateral isometric contractions reduced voluntary and electrically induced force without changes in bilateral force control variability and accuracy. Bilateral force production stability and accuracy were higher in both tasks with visual feedback. Synergistic (anti-phase) structure of force control between the lower limbs occurred and the values of synergy index were higher only during the performance of the asymmetrical task with visual feedback. In addition, greater bilateral force control accuracy was observed during the performance of the asymmetrical task (with and without visual feedback), despite no differences in within-trial variability of both tasks.  相似文献   

12.
The authors investigated the structure of force production and variability as a function of grip configuration and width during precision grasping. Variability was studied in absolute (standard deviation) and relative (coefficient of variation) terms; in addition, the authors used approximate entropy to examine regularity. In Experiment 1, the participants (N = 14) used a 2-digit grasp (thumb, index), whereas in Experiment 2, the participants (N = 11) used a 3-digit grasp (thumb, index, middle). The level and regularity of force increased with grip width. The amount of variability was least at narrow grip widths for 2-digit grasping and greatest at narrow grip widths for 3-digit grasping. That pattern of findings is not necessitated by the mechanical equilibrium of grasping; thus, it also reflected adaptive neural reorganization of force output to task demands.  相似文献   

13.
This study was designed to test the hypothesis derived from information theory that increases in the variability of motor responses result from increases in perceptual-motor noise. Young adults maintained isometric force for extended periods at different levels of their maximum voluntary contraction. Force variability (SD) increased exponentially as a function of force level. However, the signal-to-noise ratio (M/SD), an index of information transmission, as well as measures of noise in both the time (approximate entropy) and frequency (power spectrum) domains, changed according to an inverted U-shaped function over the range of force levels. These findings indicate that force variability is not directly related to noise but that force output noisiness is positively correlated with the amount of information transmitted.  相似文献   

14.
An experiment is reported documenting the relationship between peak force and peak force variability with a fixed criterion time to peak force for an isometric task requiring activation of the elbow flexors. The results show that maximum peak force increases with increments in time to peak force and that peak force variability increases with increments of peak force in an exponential type function. Furthermore, despite the presence of peak force and time to peak force feedback, subjects systematically shifted time to peak force as a function of the percentage of peak force being produced. This temporal modulation changes the percentage of peak force represented by any given peak force criterion. When peak force is made proportional to the degree of departure from the criterion time to peak force, a linear relationship is found between peak force and peak force variability. These findings suggest that time to peak force and rate of force production are parameters that influence veridical estimates of the force variability function.  相似文献   

15.
An experiment is reported documenting the relationship between peak force and peak force variability with a fixed criterion time to peak force for an isometric task requiring activation of the elbow flexors. The results show that maximum peak force increases with increments in time to peak force and that peak force variability increases with increments of peak force in an exponential type function. Furthermore, despite the presence of peak force and time to peak force feedback, subjects systematically shifted time to peak force as a function of the percentage of peak force being produced. This temporal modulation changes the percentage of peak force represented by any given peak force criterion. When peak force is made proportional to the degree of departure from the criterion time to peak force, a linear relationship is found between peak force and peak force variability. These findings suggest that time to peak force and rate of force production are parameters that influence veridical estimates of the force variability function.  相似文献   

16.
The authors examined the influence of intermittent (40-5,000 ms) visual information on the control of rhythmical isometric force output (0.5, 2.0, and 4.0 Hz) in 10 participants. Force variability decreased as a function of less intermittent visual information only in the 0.5- and 2.0-Hz tasks. Vision influenced the frequency structure of force output through 0-12 Hz in the 0.5-Hz task, but in only the 10.0- to 12.0-Hz range in the 2.0-Hz task and not in the 4.0-Hz task. The effective use of intermittent visual information in force output was mediated by task frequency, and that mediation was reflected in the differential emphasis of feedback and feedforward processes over multiple timescales of control.  相似文献   

17.
Although the effects of attention on movement execution are well documented behaviorally, much less research has been done on the neurophysiological changes that underlie attentional focus effects. This study presents two experiments exploring effects of attention during an isometric plantar-flexion task using surface electromyography (sEMG). Participants' attention was directed either externally (towards the force plate they were pushing against) or internally (towards their own leg, specifically the agonist muscle). Experiment 1 tested the effects of attention on accuracy and efficiency of force produced at three target forces (30, 60, and 100% of the maximum voluntary contraction; MVC). An internal focus of attention reduced the accuracy of force being produced and increased cocontraction of the antagonist muscle. Error on a given trial was positively correlated with the magnitude of cocontraction on that trial. Experiment 2 tested the effects of attention on muscular fatigue at 30, 60 and 100%MVC. An internal focus of attention led to less efficient intermuscular coordination, especially early in the contraction. These results suggest that an internal focus of attention disrupts efficient motor control in force production resulting in increased cocontraction, which potentially explains other neuromechanical findings (e.g. reduced functional variability with an internal focus).  相似文献   

18.
The aim of the present study was to investigate memory effects, force accuracy, and variability during constant isometric force at different force levels, using auditory biofeedback. Two types of transition trials were used: a biofeedback-no biofeedback transition trial and a no biofeedback-biofeedback transition trial. The auditory biofeedback produced a low- or high-pitched sound when participants produced an isometric force lower or higher than required, respectively. To achieve this goal, 16 participants were asked to produce and maintain two different isometric forces (30 ± 5% and 90 N ± 5%) during 25 s. Constant error and standard deviation of the isometric force were calculated. While accuracy and variability of the isometric force varied according to the transition trial, a drift of the force appeared in the no biofeedback condition. This result suggested that the degradation of information about force output in the no biofeedback condition was provided by a leaky memory buffer which was mainly dependent on the sense of effort. Because this drift remained constant whatever the transition used, this memory buffer seemed to be independent of short-term memory processes.  相似文献   

19.
The purpose of this study was to compare force variability and the neural activation of the agonist muscle during constant isometric contractions at different force levels when the amplitude of respiration and visual feedback were varied. Twenty young adults (20–32 years, 10 men and 10 women) were instructed to accurately match a target force at 15% and 50% of their maximal voluntary contraction (MVC) with abduction of the index finger while controlling their respiration at different amplitudes (85%, 100% and 125% normal) in the presence and absence of visual feedback. Each trial lasted 22 s and visual feedback was removed from 8–12 and 16–20 s. Each subject performed three trials with each respiratory condition at each force level. Force variability was quantified as the standard deviation of the detrended force data. The neural activation of the first dorsal interosseus (FDI) was measured with bipolar surface electrodes placed distal to the innervation zone. Relative to normal respiration, force variability increased significantly only during high-amplitude respiration (∼63%). The increase in force variability from normal- to high-amplitude respiration was strongly associated with amplified force oscillations from 0 to 3 Hz (R2 ranged from .68 to .84, p < .001). Furthermore, the increase in force variability was exacerbated in the presence of visual feedback at 50% MVC (vision vs. no-vision: .97 vs. .87 N) and was strongly associated with amplified force oscillations from 0 to 1 Hz (R2 = .82) and weakly associated with greater power from 12 to 30 Hz (R2 = .24) in the EMG of the agonist muscle. Our findings demonstrate that high-amplitude respiration and visual feedback of force interact and amplify force variability in young adults during moderate levels of effort.  相似文献   

20.
The authors investigated whether force control is similar between the upper and lower limbs and between contractions that involve 1 or 2 joints. Six volunteers (27.5 +/- 11.2 years of age) attempted to produce consistent discrete rapid force responses of 30, 60, and 90 N by using 6 different body postures, 3 with the upper and 3 with the lower limb. One of the postures for each limb involved 2 joints. The standard deviation of peak force and impulse (aggregate of the force-time curve) was significantly greater ( approximately 25%) for the lower limb than for the upper limb (p <.01). Contractions that involved 1 or 2 joints within a limb had similar variability. Therefore, the upper limb might have better control of force than the lower limb because of its extensive use in fine motor tasks in daily activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号