首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The kinematics of leftward and rightward movements are different. The question is raised whether these differences in both arms are best accounted for in terms of the flexion-extension dimension or the leftward-rightward dimension. In a simple step-tracking experiment the acceleration-time curves of fast flexions and extensions of the left and of the right elbow joint in a horizontal plane were recorded. The durations of individual segments of the acceleration curves are best predicted by spatial direction: that is, the differences between leftward and rightward movements are either both positive or both negative in both arms. This holds only for the first part of the movement until maximum deceleration is reached. From then on the timing is best predicted by the flexion-extension dimension. This is taken as evidence for a two-process theory of motor control according to which a central process is first in command and a lower-level, muscle-related process then takes over. Although a change which corresponds to the one observed in the time variables is not seen in the maxima of the acceleration curves, this seeming disparity can be reconciled with a two-process theory.  相似文献   

2.
Generalized motor program theory and the models of Schmidt, Zelaznik, and Frank (1978), and Meyer, Smith, and Wright (1982) of speed-accuracy relationships in aimed hand movements require that the underlying acceleration-time patterns exhibit time rescalability, in which all acceleration-time functions in an aimed hand movement are generated from one rescalable pattern. We examined this property as a function of movement time in Experiment 1, and as a function of movement time and movement distance in Experiment 2. Both experiments failed to demonstrate strict time rescalability in acceleration-time patterns, with the time to peak positive acceleration being invariant across movement time. This suggests that time rescalability is not a necessary condition for the linear relation between speed and spatial variability. A second major finding was that the variability in distance traveled at the end of positive acceleration was independent of movement time, contrary to the symmetric-impulse-variability model of Meyer et al. (1982). The findings of both experiments suggest that the processes involved in decelerating the limb play an important, but yet to be understood, role in determining the linear speed-accuracy trade-off. Finally, these results suggest that generalized motor programs are not based on simple, time-rescalable acceleration patterns.  相似文献   

3.
Two experiments were conducted in which participants (N = 12, Experiment 1; N = 12, Experiment 2) performed rapid aiming movements with and without visual feedback under blocked, random, and alternating feedback schedules. Prior knowledge of whether vision would be available had a significant impact on the strategies that participants adopted. When they knew that vision would be available, less time was spent preparing movements before movement initiation. Participants also reached peak deceleration sooner but spent more time after peak deceleration adjusting limb trajectories. Consistent with those findings, analysis of spatial variability at different points in the trajectory indicated that variability increased up to peak deceleration but then decreased from peak deceleration to the end of the movement.  相似文献   

4.
《Brain and cognition》2014,84(3):342-350
The internal processes involved in synchronizing our movements with environmental stimuli have traditionally been addressed using regular metronomic sequences. Regarding real-life environments, however, biological rhythms are known to have intrinsic variability, ubiquitously characterized as fractal long-range correlations. In our research we thus investigate to what extent the synchronization processes drawn from regular metronome paradigms can be generalized to other (biologically) variable rhythms. Participants performed synchronized finger tapping under five conditions of long-range and/or short-range correlated, randomly variable, and regular auditory sequences. Combining experimental data analysis and numerical simulation, we found that synchronizing with biologically variable rhythms involves the same internal processes as with other variable rhythms (whether totally random or comprising lawful regularities), but different from those involved with a regular metronome. This challenges both the generalizability of conclusions drawn from regular-metronome paradigms, and recent research assuming that biologically variable rhythms may trigger specific strong anticipatory processes to achieve synchronization.  相似文献   

5.
The internal processes involved in synchronizing our movements with environmental stimuli have traditionally been addressed using regular metronomic sequences. Regarding real-life environments, however, biological rhythms are known to have intrinsic variability, ubiquitously characterized as fractal long-range correlations. In our research we thus investigate to what extent the synchronization processes drawn from regular metronome paradigms can be generalized to other (biologically) variable rhythms. Participants performed synchronized finger tapping under five conditions of long-range and/or short-range correlated, randomly variable, and regular auditory sequences. Combining experimental data analysis and numerical simulation, we found that synchronizing with biologically variable rhythms involves the same internal processes as with other variable rhythms (whether totally random or comprising lawful regularities), but different from those involved with a regular metronome. This challenges both the generalizability of conclusions drawn from regular-metronome paradigms, and recent research assuming that biologically variable rhythms may trigger specific strong anticipatory processes to achieve synchronization.  相似文献   

6.
In this study, the authors examined the influence of the intrinsic dynamics of discrete and rhythmical prehension. Six adults underwent a scaling procedure in which the movement time was systematically increased so that it corresponded with 6 frequencies: 0.5, 0.75, 1.0, 1.25, 1.5, and 1.75 Hz. In posttests, participants moved at their own preferred pace. No differences were found in the relative time to final hand closure (T[rfc]) between the rhythmical and discrete conditions. The variability of T[rfc] was shown to be less at the preferred step of scaling than during the posttest. With the scaling technique, one can guide participants into more stable movement patterns than they can achieve when the metronome is not present, because, when the metronome is present, their movements become anchored to the external pacing cue. Those findings provide support for the use of a scaling technique to identify the influence of the intrinsic dynamics during rhythmical and discrete movements.  相似文献   

7.
Transient overshoot (TO), which is assessed as the distance between the movement amplitude and the final position, was measured in a series of rapid, discrete elbow flexion movements performed under different distance and loading conditions by 7 participants. A positive relationship was found between kinematic variables (peak velocity, peak acceleration and deceleration, and the symmetry ratio) and the magnitude of TO, particularly in short movements performed against a light load. The relationships between TO and electromyographic (EMG) variables were low and mainly insignificant. Thus, TO contributes to the variability of rapid, discrete movements and therefore should be taken into account as an additional parameter in studies of the scaling of movement variables with movement mechanical conditions. TO could also represent a consequence of mechanical properties of the single-joint system rather than an independently programmed primary submovement.  相似文献   

8.
Transient overshoot (TO), which is assessed as the distance between the movement amplitude and the final position, was measured in a series of rapid, discrete elbow flexion movements performed under different distance and loading conditions by 7 participants. A positive relationship was found between kinematic variables (peak velocity, peak acceleration and deceleration, and the symmetry ratio) and the magnitude of TO, particularly in short movements performed against a light load. The relationships between TO and electromyographic (EMG) variables were low and mainly insignificant. Thus, TO contributes to the variability of rapid, discrete movements and therefore should be taken into account as an additional parameter in studies of the scaling of movement variables with movement mechanical conditions. TO could also represent a consequence of mechanical properties of the single-joint system rather than an independently programmed primary submovement.  相似文献   

9.
Two experiments are reported in which the effects of different levels of spatial variability of the initial phase of aiming movements were explored. It was found that longer, faster, and more spatially variable initial sub movements were associated with an almost proportional increase in the distance between the average location at which the first submovement ended and the target. The first experiment involved a multisegmental arm motion that required a direction reversal, in which spatial variability could be estimated in all three dimensions. The second was a unidirectional, one-degree-of-freedom wrist supination task. The variability-amplitude relationship for the initial submovement was present in both. It is argued that the variability, or unpredictability, of the initial submovement is a determinant of its average amplitude, such that initial submovements approach the target as closely as is permitted by the level of variability. Such a mechanism allows task constraints such as accuracy requirements and allowable error rates to be met most efficiently, in a manner similar to the recently described optimization of submovement durations. If this mechanism is a general, ubiquitous phenomenon in rapid aiming, certain features of its internal kinematic structure are predictable. A set of five such predictions is outlined.  相似文献   

10.
The effect of practice variations on spatial and temporal accuracy was investigated in both discrete and continuous aiming movements in the preferred hand of college-aged participants (N=25). In a completely within-subject design, participants made rapid reversal movements with a lightweight lever in the sagittal plane, practicing 20 degrees and 60 degrees movements in repeated (same distance) and alternating (switching between 20 degrees and 60 degrees) conditions. Movements were also made one at a time (discretely) or in sequences of 20 movements (continuously). Spatial constant error, spatial variable error, spatial overall error, the coefficient of variation, movement time, and the relative timing were calculated for each set of 20 movements and analyzed by within-subject analyses of variance. Movements in the repeated conditions for both discrete and continuous movements were more accurate and consistent compared to the alternating condition where the short movements were overshot and the long movements were undershot. Discrete movements were more spatially and temporally variable than continuous movements. The discrete and continuous movements showed different relative timing patterns, suggesting that the temporal structure of the motor program is affected by task characteristics.  相似文献   

11.
In a number of studies, we have demonstrated that the spatial-temporal coupling of eye and hand movements is optimal for the pickup of visual information about the position of the hand and the target late in the hand's trajectory. Several experiments designed to examine temporal coupling have shown that the eyes arrive at the target area concurrently with the hand achieving peak acceleration. Between the time the hand reached peak velocity and the end of the movement, increased variability in the position of the shoulder and the elbow was accompanied by a decreased spatial variability in the hand. Presumably, this reduction in variability was due to the use of retinal and extra-retinal information about the relative positions of the eye, hand and target. However, the hand does not appear to be a slave to the eye. For example, we have been able to decouple eye movements and hand movements using Müller-Lyer configurations as targets. Predictable bias, found in primary and corrective saccadic eye movements, was not found for hand movements, if on-line visual information about the target was available during aiming. That is, the hand remained accurate even when the eye had a tendency to undershoot or overshoot the target position. However, biases of the hand were evident, at least in the initial portion of an aiming movement, when vision of the target was removed and vision of the hand remained. These findings accent the versatility of human motor control and have implications for current models of visual processing and limb control.  相似文献   

12.
Visual regulation of upper limb movements occurs throughout the trajectory and is not confined to discrete control in the target area. Early control is based on the dynamic relationship between the limb, the target, and the environment. Despite robust outcome differences between protocols involving visual manipulations, it remains difficult to identify the kinematic events that characterize these differences. In this study, participants performed manual aiming movements with and without vision. We compared several traditional approaches to movement analysis with two new methods of quantifying online limb regulation. As expected, participants undershot the target and their movement endpoints were more variable when vision was not available. Although traditional measures such as reaction time, time after peak velocity, and the presence of discontinuities in acceleration were sensitive to the visual manipulation, measures quantifying the trial-to-trial spatial variability throughout the trajectory were the most effective in isolating the time course of online regulation.  相似文献   

13.
Previous work on the approach trajectories of hands to targets in tracking and aiming tasks had produced contradictory evidence about the shape of these curves. This paper shows that these trajectories are a function of the level of practice of the subject; an interpretation in terms of the theory of intermittent control of movements is advanced. Previous contradictory data can be resolved by reference to the subjects/ level of practice. In addition, this theory will encompass the differences between accurate and free movement trajectories reported earlier.  相似文献   

14.
In discrete aiming movements the task criteria of time-minimization to a spatial target (e.g., Fitts, 1954) and time-matching to a spatial-temporal goal (e.g., Schmidt et al., 1979) tend to produce different functions of the speed-accuracy trade-off. Here we examined whether the task-related movement speed-accuracy characteristics were due to differential space-time trade-offs in time-matching, velocity-matching and time-minimizing task goals. Twenty participants performed 100 aiming trials for each of 15 combinations of task-type (3) and space-time condition (5). The prevalence of the primary types of sub-movement (none, pre-peak, post-peak, undershooting and overshooting) was determined from the kinematics of the movement trajectory. There were comparable distributions of trajectory sub-movement profiles and space-time movement outcomes across the three tasks at the short movement duration that became increasingly dissimilar over decreasing movement velocity and increasing movement time conditions. Movement time was the most influential variable in mediating sub-movement characteristics and the spatial/temporal outcome accuracy and variability of discrete aiming tasks – a role that was magnified in the explicit task demands of time-matching. The time-matching and time-minimization task goals in discrete aiming induce qualitatively different control processes that progressively contribute beyond the minimal time conditions to task-specific space-time accuracy and variability characteristics of the respective movement speed-accuracy functions.  相似文献   

15.
Researchers have suggested that visual feedback not only plays a role in the correction of errors during movement execution but that visual feedback from a completed movement is processed offline to improve programming on upcoming trials. In the present study, we examined the potential contribution of online and offline processing of visual feedback by analysing spatial variability at various kinematic landmarks in the limb trajectory (peak acceleration, peak velocity, peak negative acceleration and movement end). Participants performed a single degree of freedom video aiming task with and without vision of the cursor under four criterion movement times (225, 300, 375 and 450 ms). For movement times of 225 and 300 ms, the full vision condition was less variable than the no vision condition. However, the form of the variability profiles did not differ between visual conditions suggesting that the contribution of visual feedback was due to offline processes. In the 375 and 450 ms conditions, there was evidence for both online and offline control as the form of the variability profiles differed significantly between visual conditions.  相似文献   

16.
The effect of concurrent visual feedback (CVF) on continuous aiming movements was investigated in the preferred hand of participants of college age (ns = 12 men, 8 women). Participants made continuous rapid reversal movements with a lightweight lever in the sagittal plane. Participants attempted to reach a short target (20 degrees) and a long target (60 degrees) in separate constant practice conditions, but alternated between the two targets in a variable practice condition. Four blocks of practice trials were provided in each condition, with 40 movements made in each. CVF of the position-time trace was provided for the first 20 movements of each block, but was removed for the remaining 20 movements in each block. Movements were more accurate and consistent during constant practice compared to variable practice where the short target was overshot and the long target was undershot. CVF reduced errors in all conditions, compared to movements without CVF, particularly for the short target during variable practice. The results suggest that the interference generated by alternating targets can be modulated by providing visual feedback, but once the visual feedback was removed, errors increased markedly.  相似文献   

17.
Recent research [e.g., Carrozzo, M., Stratta, F., McIntyre, J., & Lacquaniti, F. (2002). Cognitive allocentric representations of visual space shape pointing errors. Experimental Brain Research 147, 426-436; Lemay, M., Bertrand, C. P., & Stelmach, G. E. (2004). Pointing to an allocentric and egocentric remembered target. Motor Control, 8, 16-32] reported that egocentric and allocentric visual frames of reference can be integrated to facilitate the accuracy of goal-directed reaching movements. In the present investigation, we sought to specifically examine whether or not a visual background can facilitate the online, feedback-based control of visually-guided (VG), open-loop (OL), and memory-guided (i.e. 0 and 1000 ms of delay: D0 and D1000) reaches. Two background conditions were examined in this investigation. In the first background condition, four illuminated LEDs positioned in a square surrounding the target location provided a context for allocentric comparisons (visual background: VB). In the second condition, the target object was singularly presented against an empty visual field (no visual background: NVB). Participants (N=14) completed reaching movements to three midline targets in each background (VB, NVB) and visual condition (VG, OL, D0, D1000) for a total of 240 trials. VB reaches were more accurate and less variable than NVB reaches in each visual condition. Moreover, VB reaches elicited longer movement times and spent a greater proportion of the reaching trajectory in the deceleration phase of the movement. Supporting the benefit of a VB for online control, the proportion of endpoint variability explained by the spatial location of the limb at peak deceleration was less for VB as opposed to NVB reaches. These findings suggest that participants are able to make allocentric comparisons between a VB and target (visible or remembered) in addition to egocentric limb and VB comparisons to facilitate online reaching control.  相似文献   

18.
An experiment was conducted to examine the change in the relation between programming and "on-line" correction as a developmental explanation of children's arm movement performance. Each of 54 children in three age groups (5, 8, and 10 yr.) completed two types of rapid aiming arm movements in the longitudinal plane on the surface of a digitizer. Percent primary submovements and timing variability were dependent variables. Analysis suggested that the 5-yr.-olds used "on-line" monitoring during the arm movement and did not perform the movement sequence as a functional unit. Compared with 8- and 10-yr.-olds, the 5-yr.-olds planned a smaller portion of movements, executed the arm movements with more variability in time to peak velocity. The 8- and 10-yr.-olds appeared to plan their movements and execute the sequence as a unit. The developmental implications were discussed.  相似文献   

19.
Stereotype formation about novel groups was analyzed with trivariate stimulus distributions that were generated by group membership, valence of behavior, and a context variable. Within this stimulus setting, we manipulated the confounding role of the context variable and the distinctiveness of events in terms of their relative infrequency. The experimental procedure allowed us to analyze illusory and spurious correlations in a joint framework, to conduct focused tests for memory effects of relative infrequency and to investigate the detection of covariations with the context variable. The results revealed that illusory and spurious correlations were formed without enhanced memory for infrequent events and with existing covariations of the confounding context factor being well extracted. These observations suggest that illusory and spurious correlations can be understood without assuming specific cognitive processes that are tied to the particular characteristics of a given stimulus distribution, such as enhanced memory in the case of relative infrequency and neglect of a context variable in the case of a confounding factor. Instead, computer simulations with an exemplar‐based learning model demonstrated that exemplar‐based category learning may provide a coherent and integrative theoretical framework for illusory correlations, spurious correlations and true contingency learning in social cognition. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Temporal and spatial coupling of point of gaze (PG) and movements of the finger, elbow, and shoulder during a speeded aiming task were examined. Ten participants completed 40-cm aiming movements with the right arm, in a situation that allowed free movement of the eyes, head, arm, and trunk. On the majority of trials, a large initial saccade undershot the target slightly, and 1 or more smaller corrective saccades brought the eyes to the target position. The finger, elbow, and shoulder exhibited a similar pattern of undershooting their final positions, followed by small corrective movements. Eye movements usually preceded limb movements, and the eyes always arrived at the target well in advance of the finger. There was a clear temporal coupling between primary saccade completion and peak acceleration of the finger, elbow, and shoulder. The initiation of limb-segment movement usually occurred in a proximal-to-distal pattern. Increased variability in elbow and shoulder position as the movement progressed may have served to reduce variability in finger position. The spatial-temporal coupling of PG with the 3 limb segments was optimal for the pick up of visual information about the position of the finger and the target late in the movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号