首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Visuomotor adaptation in normal aging   总被引:10,自引:0,他引:10       下载免费PDF全文
Visuomotor adaptation to a gradual or sudden screen cursor rotation was investigated in healthy young and elderly subjects. Both age groups were equally divided into two subgroups; one subgroup was exposed to 11.25° step increments of visual feedback rotation, every 45 trials (up to a total of 90°), whereas a second subgroup was subjected to 90° rotation from the onset of exposure. Participants performed discrete, horizontal hand movements to virtual targets in four randomized directions. Targets appeared on a computer screen in front of them, and a board prevented vision of the hand at all times. Differential effects of aging on visuomotor adaptation were found, depending on the time course of the visual distortion. In both age groups, early exposure to the sudden visual feedback distortion resulted in typical spiral-like trajectories, which became straighter by late exposure. However, the final adaptation level was reduced in the aged group, although the aftereffects were similar. When subjects were exposed to the gradual distortion, no statistically significant differences in measures of adaptation with advancing age were found. In this case, both age groups appeared to adapt equally. However, after removal of the distortion, elderly subjects showed reduced aftereffects as compared with the young group. These findings suggest differential effects of aging on adaptation to gradual versus sudden visual feedback distortions, and may help to explain the conflicting results obtained in previous visuomotor adaptation studies.  相似文献   

2.
Adaptation to visuomotor rotations in younger and older adults   总被引:1,自引:0,他引:1  
Adaptation to a visuomotor rotation is known to be impaired at older adult age. The authors examined whether the impairment is present already at preretirement age and whether it depends on the difficulty of the adaptation task. Moreover, the authors tested predictions of the hypothesis that the age-related impairment pertains primarily to strategic corrections and the explicit knowledge on which they are based but not to the acquisition of an (implicit) internal model of the novel visuomotor transformation. The authors found an age-related impairment of adaptation and explicit knowledge already at preretirement age but no age-related change of aftereffects. With an incremental simplification of the adaptation task, age-related changes were able to be eliminated. Individual differences of the quality of explicit knowledge were associated with differences of adaptation, but not of aftereffects. When age groups were matched by explicit knowledge, age-related impairments of adaptation largely disappeared. However, a reliable difference remained in one of the experiments, suggesting that other processes of adjustment to a visuomotor rotation might be affected by aging as well.  相似文献   

3.
Consistent with the widely accepted notion of separate specification of movement amplitude and direction, it has been argued that there is also a categorical difference between adaptation to novel visuomotor rotations and to novel visuomotor gains. In line with this view, ageing seems to affect rotation and gain adaptation differently in that age-related impairments are consistently found for the former, but not for the latter. In this study we ask whether the contrasting findings could also be ascribed to differences in the level of difficulty of gain and rotation adaptation tasks, respectively. In order to increase the difficulty of gain adaptation, younger and older participants had to adapt to a direction-dependent gain transformation. Results revealed direction-dependent adaptation in both groups. More importantly, we replicated the typical findings of age-related impairments of adaptation, but not of aftereffects, that were previously only reported for rotation adaptation. Younger participants also showed superior explicit knowledge regarding the novel visuomotor mapping as compared to the older participants. We show that this knowledge was used by younger participants to selectively augment adaptive shifts. Finally, our findings suggest that the difficulty of the novel visuomotor transformation and, related to this, the involvement of explicit knowledge in adaptation is critical for age-related changes to show up, but not the type of adaptation task, rotation and gain adaptation, respectively.  相似文献   

4.
The control of a cursor on a computer monitor offers a simple means of exploring the limits of the plasticity of human visuomotor coordination. The authors explored the boundary conditions for adaptation to nonlinear visuomotor amplitude transformations. The authors hypothesized that only with terminal visual feedback during practice, but not with continuous visual feedback, humans might develop an internal model of the nonlinear visuomotor amplitude transformation. Thus, 2 groups were engaged in a sensorimotor adaptation task receiving either continuous or terminal visual feedback during the practice phase. In contrast to expectations, adaptive shifts and aftereffects observed in visual open-loop tests were linearly related to target amplitudes for both groups. Although the 2 feedback groups did not differ with respect to adaptive shifts and aftereffects, terminal visual feedback resulted in stable visual open-loop performance for an extended period, whereas movement errors increased after continuous visual feedback during practice. The benefit of continuous visual feedback, on the other hand, was faster closed-loop performance, indicating an optimization of visual closed-loop control.  相似文献   

5.
The control of a cursor on a computer monitor offers a simple means of exploring the limits of the plasticity of human visuomotor coordination. The authors explored the boundary conditions for adaptation to nonlinear visuomotor amplitude transformations. The authors hypothesized that only with terminal visual feedback during practice, but not with continuous visual feedback, humans might develop an internal model of the nonlinear visuomotor amplitude transformation. Thus, 2 groups were engaged in a sensorimotor adaptation task receiving either continuous or terminal visual feedback during the practice phase. In contrast to expectations, adaptive shifts and aftereffects observed in visual open-loop tests were linearly related to target amplitudes for both groups. Although the 2 feedback groups did not differ with respect to adaptive shifts and aftereffects, terminal visual feedback resulted in stable visual open-loop performance for an extended period, whereas movement errors increased after continuous visual feedback during practice. The benefit of continuous visual feedback, on the other hand, was faster closed-loop performance, indicating an optimization of visual closed-loop control.  相似文献   

6.
If the visual world is artificially shifted by only 10 degrees, people initially experience difficulty in directing their actions toward visual goals, but then rapidly compensate the visual distortion. The consequence of such adaptation can be measured as visual and proprioceptive aftereffects, as well as by performance on pointing tasks without visual feedback. Recent work has shown that more cognitive deficits can be improved following prism adaptation in patients with unilateral neglect. Here we show that a short visuo-manual adaptation to prisms improves performance on a mental number-bisection task recently shown to be impaired in unilateral neglect. The association previously found between space and number representation (the mental number line) may thus be grounded in common action principles. Our results suggest that visuo-motor plasticity functionally links parietal areas involved in space and number representation.  相似文献   

7.
Previous studies found little or no transfer of adaptation from reactive saccades to arm pointing movements, which suggests that the two motor systems rely on distinct adaptive mechanisms. However, this conclusion is based on experiments about the adaptation of response amplitudes, which is known to follow somewhat different principles than the adaptation of response directions. In the present study, we therefore investigate whether adapting the direction of reactive saccades will transfer to arm movements. We also test transfer in the opposite direction, from the arm to the eyes. Participants executed aimed saccades or arm movements from a central starting point towards visual targets in the participants' frontal plane. Targets were presented in eight possible locations along a circle of 20 cm radius about the starting point; each remained for 200 ms in one position, and was then displaced along the circle by -15 degrees . Participants from group E adapted to these double-stepped targets while executing eye movements, and were then tested for transfer while executing arm movements. The reciprocal design was used in participants from group A. Adaptive change in group A was about 14 degrees , while in group E it was only about 7 degrees . Transfer of adaptation was substantial, and was more pronounced when using the arm (i.e., eye-to-arm transfer in group E) rather than the eyes (i.e., arm-to-eye transfer in group A). Strong aftereffects were yielded in both groups. This pattern of findings implies that the adaptive change observed in our study was mainly based on recalibration rather than on cognitive strategies (strong aftereffects), that eyes and arm had access to a common adaptive mechanism (substantial transfer), and that the arm had better access than the eyes (larger adaptation and transfer when using the arm). When considering this outcome along with the available literature, it appears that arm and eyes may rely sometimes on a common and sometimes on distinct adaptive mechanisms, depending on the adapted parameter and on the nature of the motor task.  相似文献   

8.
The effects of correct and transformed visual feedback on rhythmic unimanual visuo-motor tracking were examined, focusing on tracking performance (accuracy and stability) and visual search behavior. Twelve participants (reduced to 9 in the analyses) manually tracked an oscillating visual target signal in phase (by moving the hand in the same direction as the target signal) and in antiphase (by moving the hand in the opposite direction), while the frequency of the target signal was gradually increased to probe pattern stability. Besides a control condition without feedback, correct feedback (representing the actual hand movement) or mirrored feedback (representing the hand movement transformed by 180 degrees) were provided during tracking, resulting in either in-phase or antiphase visual motion of the target and feedback signal, depending on the tracking mode performed. The quality (accuracy and stability) of in-phase tracking was hardly affected by the two forms of feedback, whereas antiphase tracking clearly benefited from mirrored feedback but not from correct feedback. This finding extends previous results indicating that the performance of visuo-motor coordination tasks is aided by visual feedback manipulations resulting in coherently grouped (i.e., in-phase) visual motion structures. Further insights into visuo-motor tracking with and without feedback were garnered from the visual search patterns accompanying task performance. Smooth pursuit eye movements only occurred at lower oscillation frequencies and prevailed during in-phase tracking and when target and feedback signal moved in phase. At higher frequencies, point-of-gaze was fixated at a location that depended on the feedback provided and the resulting visual motion structures. During in-phase tracking the mirrored feedback was ignored, which explains why performance was not affected in this condition. Point-of-gaze fixations at one of the end-points were accompanied by reduced motor variability at this location, reflecting a form of visuo-motor anchoring that may support the pick up of discrete information as well as the control of hand movements to a desired location.  相似文献   

9.
Understanding gait adaptation is essential for rehabilitation, and visual feedback can be used during gait rehabilitation to develop effective gait training. We have previously shown that subjects can adapt spatial aspects of walking to an implicitly imposed distortion of visual feedback of step length. To further investigate the storage benefit of an implicit process engaged in visual feedback distortion, we compared the robustness of aftereffects acquired by visual feedback distortion, versus split-belt treadmill walking. For the visual distortion trial, we implicitly distorted the visual representation of subjects’ gait symmetry, whereas for the split-belt trial, the speed ratio of the two belts was gradually adjusted without visual feedback. After adaptation, the visual feedback or the split-belt perturbation was removed while subjects continued walking, and aftereffects of preserved asymmetric pattern were assessed. We found that subjects trained with visual distortion trial retained aftereffects longest. In response to the larger speed ratio of split-belt walking, the subjects showed an increase in the size of aftereffects compared to the smaller speed ratio, but it steeply decreased over time in all the speed ratios tested. In contrast, the visual distortion group showed much slower decreasing rate of aftereffects, which was evidence of longer storage of an adapted gait pattern. Visual distortion adaptation may involve the interaction and integration of the change in motor strategy and implicit process in sensorimotor adaptation. Although it should be clarified more clearly through further studies, the findings of this study suggest that gait control employs distinct adaptive processes during the visual distortion and split-belt walking and also the level of reliance of an implicit process may be greater in the visual distortion adaptation than the split-belt walking adaptation.  相似文献   

10.
While a number of studies have focused on movement (a)symmetries between the arms in adults, less is known about movement asymmetries in typically developing children. The goal of this study was to examine interlimb differences in children when adapting to novel visuomotor and dynamic conditions while performing a center-out reaching task. We tested 13 right-handed children aged 9–11 years old. Prior to movement, one of eight targets arranged radially around the start position was randomly displayed. Movements were made either with the right (dominant) arm or the left (nondominant) arm. The children participated in two experiments separated by at least one week. In one experiment, subjects were exposed to a rotated visual display (30° about the start circle); and in the other, a 1 kg mass (attached eccentrically to the forearm axis). Each experiment consisted of three blocks: pre-exposure, exposure and post-exposure. Three measures of task performance were calculated from hand trajectory data: hand-path deviation from the straight target line, direction error at peak velocity and final position error. Results showed that during visuomotor adaptation, no interlimb differences were observed for any of the three measures. During dynamic adaptation, however, a significant difference between the arms was observed at the first cycle during dynamic adaptation. With regard to the aftereffects observed during the post-exposure block, direction error data indicate considerably large aftereffects for both arms during visuomotor adaptation; and there was a significant difference between the arms, resulting in substantially larger aftereffects for the right arm. Similarly, dynamic adaptation results also showed a significant difference between the arms; and post hoc analyses indicated that aftereffects were present only for the right arm. Collectively, these findings indicate that the dominant arm advantage for developing an internal model associated with a novel visuomotor or dynamic transform, as previously shown in young adults, may already be apparent at 9 to 11-year old children.  相似文献   

11.
Humans have unique abilities in using tools. The skilled and goal-directed use of a tool implies that processes of motor control can be adjusted to the transformation of the movement of a part of the body into the movement of the effective part of the tool. A common example is the transformation of a hand movement in the motion of a cursor on a computer monitor. In part the adjustments to such transformations are implicit, that is, without conscious awareness of the novel transformation and the appropriate change of one’s own movements. However, the adjustments can also be explicit and intentional. We review a series of experiments which show that implicit and explicit adjustments to a novel visuo-motor gain are additive. This finding suggests that the processes which generate different types of adjustment are functionally independent. In a second series of experiments it turned out that at older adult age explicit adjustments to novel visuo-motor transformations are impaired, whereas implicit adjustments remain unaffected across working age.  相似文献   

12.
A fundamental principle that has emerged from studies of natural gaze behavior is that goal-directed arm movements are typically guided by a saccade to the target. In this study, we evaluated a hypothesis that this principle does not apply to rapid reach-to-grasp movements evoked by sudden unexpected balance perturbations. These perturbations involved forward translation of a large (2 × 6 m) motion platform configured to simulate a “real-life” environment. Subjects performed a common “daily-life” visuo-cognitive task (find a telephone and make a call) that required walking to the end of the platform, which was triggered to move as they approached a handrail mounted alongside the travel path. A deception was used to ensure that the perturbation was truly unexpected. Eleven of 18 healthy young-adult subjects (age 22-30) reached to grasp or touch the rail in response to the balance perturbation. In support of the hypothesis, none of these arm reactions was guided by concurrent visual fixation of the handrail. Seven of the 11 looked at the rail upon first entering the environment, and hence may have used “stored” central-field information about the handrail location to guide the subsequent arm reaction. However, the other four subjects never looked directly at the rail, indicating a complete reliance on peripheral vision. These findings add to previous evidence of distinctions in the CNS control of volitional and perturbation-evoked arm movements. Future studies will determine whether similar visuo-motor behavior occurs when the available handhold is smaller or when subjects are not engaged in a concurrent visuo-cognitive task.  相似文献   

13.
Two experiments with left-handers examined the features of prism adaptation established by previous research with right-handers. Regardless of handedness, (1) rapid adaptation occurs in exposure pointing with developing error in the opposite direction after target achievement, especially with early visual feedback in target pointing; (2) proprioceptive or visual aftereffects are larger, depending on whether visual feedback is available early or late, respectively, in target pointing; (3) the sum of these aftereffects is equal to the total aftereffect for the eye-hand coordination loop; (4) intermanual transfer of visual aftereffects occurs only for the dominant hand; and (5) visual aftereffects are larger in left space when the dominant hand is exposed to leftward displacement. A notable handedness difference is that, while transfer of proprioceptive aftereffects only occurs to the nondominant hand in right-handers, transfer occurs in both directions for left-handers, but regardless of handedness, such transfer only occurs when the exposed hand is tested first after exposure. A discussion then focuses on the implications of these data for a theory of handedness.  相似文献   

14.
Petersik JT 《Perception》2002,31(7):825-836
Gaps in past literature have raised questions regarding the kinds of stimuli that can lead to three-dimensional (3-D) rotation aftereffects. Further, the characteristics of the buildup and decay of such aftereffects are not clear. In the present experiments, rotation aftereffects were generated by projections of cube-like stimuli whose dynamic perspective motions gave rise to the perception of rotation in unambiguous directions; test stimuli consisted of similar cubes whose rotation directions were ambiguous. In experiment 1, the duration of the adaptation stimulus was varied and it was found that the 3-D rotation aftereffect develops with a time constant of approximately 26 s. In experiment 2, the duration between adaptation and testing was varied. It was found that the 3-D rotation aftereffect has a decay constant of about 9 s, similar to that observed with 2-D motion aftereffects. Experiment 3 showed that the rotation aftereffects were not simple depth aftereffects. To account for these aftereffects and related data, a modification of an existing neural-network model is suggested.  相似文献   

15.
Abstract

Reaching to targets in a virtual reality environment with misaligned visual feedback of the hand results in changes in movements (visuomotor adaptation) and sense of felt hand position (proprioceptive recalibration). We asked if proprioceptive recalibration arises even when the misalignment between visual and proprioceptive estimates of hand position is only experienced during movement. Participants performed a “shooting task” through the targets with a cursor that was rotated 30° clockwise relative to hand motion. Results revealed that, following training on the shooting task, participants adapted their reaches to all targets by approximately 16° and recalibrated their sense of felt hand position by 8°. Thus, experiencing a sensory misalignment between visual and proprioceptive estimates of hand position during movement leads to proprioceptive recalibration.  相似文献   

16.
Terminal target-pointing error on the 1st trial of exposure to optical displacement is usually less than is expected from the optical displacement magnitude. The authors confirmed 1st-trial adaptation in the task of pointing toward optically displaced targets while visual feedback was delayed until movement completion. Measurement of head-shoulder posture while participants (N = 24) viewed the optically displaced field revealed that their shoulders felt turned in the direction opposite to the displacement (visual capture), accounting for all but about 4% to 10% of 1st-trial adaptation. First-trial adaptation was unrelated to realignment aftereffects. First-trial adaptation is largely an artifact of the asymmetry of the structured visual field produced by optical displacement, which induces a felt body rotation, thereby reducing the effective optical displacement.  相似文献   

17.
本研究探讨了观察者与观察目标存在相对运动时视觉系统对目标数量特征的适应后效的皮层映射特征, 并与对比度适应后效的映射规律进行比较。包括两项实验。其中, 实验一要求被试在适应目标后转换注视点, 考察眼跳后相同和不同视网膜区域以及相同和不同空间区域的适应后效, 发现数量适应后效具有部分空间-皮层映射特性, 而对比度适应后效则表现出完全的视网膜-皮层映射特征。实验二采用固定的注视点, 考察目标运动后目标原位置和新位置区域的适应后效, 发现数量适应后效不完全依赖于视网膜-皮层映射, 它可以“追随”客体运动重新映射到新的位置, 表现出基于客体映射的特征, 而对比度适应后效则完全依赖于视网膜-皮层映射, 不能“追随”客体移动在目标新位置重新形成映射。两项实验结果提示, 相对于对比度等低级表面特征而言, 数量特征对目标的描述涉及更高的加工水平, 它可以与观察目标的相对运动信息进行整合, 且这种整合在眼跳和非眼跳的观察条件下都可发生。  相似文献   

18.
A quantitative method is developed for assessing the quality of pattern information in imagery, using the magnitude of color aftereffects as an objective index. Subjects were given instructions to project imagined bar patterns of particular width and orientation onto adapting color fields, in such a manner as to simulate standard conditions for establishing the McCollough effect. Our control procedures indicate that the resulting orientation-specific complementary color aftereffects cannot be attributed to the conditioning of particular directions of eye scanning movements to color processing during adaptation, or to other possible sources of experimental bias. Furthermore, subjects who rated themselves prior to the adaptation procedure as having relatively vivid imagery showed significantly larger aftereffects than those who reported having relatively low imagery. These results not only provide an important confirmation of our earlier finding that imagination can replace physical pattern information in the formation of basic color-feature associations in the human visual system, but also demonstrate that these aftereffects can provide a practical measure of the fidelity of pattern representation in visual images.  相似文献   

19.
Patients with Parkinson’s disease (PD) have difficulties in movement adaptation to optimize performance in novel environmental contexts such as altered screen cursor-hand relationships. Prior studies have shown that the time course of the distortion differentially affects visuomotor adaptation to screen cursor rotations, suggesting separate mechanisms for gradual and sudden adaptation. Moreover, studies in human and non-human primates suggest that adaptation to sudden kinematic distortions may engage the basal ganglia, whereas adaptation to gradual kinematic distortions involves cerebellar structures. In the present studies, participants were patients with PD, who performed center-out pointing movements, using either a digitizer tablet and pen or a computer trackball, under normal or rotated screen cursor feedback conditions. The initial study tested patients with PD using a cross-over experimental design for adaptation to gradual as compared with sudden rotated hand-screen cursor relationships and revealed significant after-effects for the gradual adaptation task only. Consistent with these results, findings from a follow-up experiment using a trackball that required only small finger movements showed that patients with PD adapt better to gradual as against sudden perturbations, when compared to age-matched healthy controls. We conclude that Parkinson’s disease affects adaptation to sudden visuomotor distortions but spares adaptation to gradual distortions.  相似文献   

20.
Previous research on visual contingent aftereffects has been concerned with examining the effects of various parameters (e.g., spatial frequency and luminance) on the adaptation to, and decay of, contingent aftereffects. The current study tested the viability of using visual contingent aftereffects in a display context. Using established characteristics of contingent aftereffects, a program of contingent aftereffect adaptation was designed. Studies were conducted to determine if subjects who were adapted to see visual contingent aftereffects invoked by a visual display could achieve more rapid or certain identification of a display under low luminance conditions. The results confirmed (a) that contingent aftereffects can improve performance on a visual discrimination task requiring information from a display and (b) that contingent aftereffects are more enhanced at low levels of illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号