首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gesture–speech synchrony re‐stabilizes when hand movement or speech is disrupted by a delayed feedback manipulation, suggesting strong bidirectional coupling between gesture and speech. Yet it has also been argued from case studies in perceptual–motor pathology that hand gestures are a special kind of action that does not require closed‐loop re‐afferent feedback to maintain synchrony with speech. In the current pre‐registered within‐subject study, we used motion tracking to conceptually replicate McNeill's ( 1992 ) classic study on gesture–speech synchrony under normal and 150 ms delayed auditory feedback of speech conditions (NO DAF vs. DAF). Consistent with, and extending McNeill's original results, we obtain evidence that (a) gesture‐speech synchrony is more stable under DAF versus NO DAF (i.e., increased coupling effect), (b) that gesture and speech variably entrain to the external auditory delay as indicated by a consistent shift in gesture‐speech synchrony offsets (i.e., entrainment effect), and (c) that the coupling effect and the entrainment effect are co‐dependent. We suggest, therefore, that gesture–speech synchrony provides a way for the cognitive system to stabilize rhythmic activity under interfering conditions.  相似文献   

2.
fMRI of developmental stuttering: a pilot study   总被引:4,自引:0,他引:4  
The purpose of this investigation was to explore the feasibility of fMRI in the study of developmental stuttering. Speech contrasts (loud versus silent reading) and language contrasts (reading of semantically meaningful text versus nonsense words) of six developmental stutterers and six nonstutterers were compared using a commercial 1 Tesla MR-Scanner (Siemens Expert). Results indicate that mapping cortical function in persons who stutter is indeed feasible, even with a 1TMR-system. Compared to normals the stutterers seemed to employ different and particularly less differentiated auditory and motor feedback strategies in speech. They apparently rely on auditory processing and on cerebellar contribution as much during silent reading as during reading aloud. Moreover, they showed a greater involvement of the right hemisphere in language processing, activating not only the typical language areas on the left but also and with equal magnitude the right side homologues of these areas. In spite of the promising results, at present several practical problems such as possible movement artifacts and possible masking through scanner noise still hamper a more straightforward use of fMRI in the study of developmental stuttering.  相似文献   

3.
We used H215O PET to characterize the common features of two successful but markedly different fluency-evoking conditions — paced speech and singing — in order to identify brain mechanisms that enable fluent speech in people who stutter. To do so, we compared responses under fluency-evoking conditions with responses elicited by tasks that typically elicit dysfluent speech (quantifying the degree of stuttering and using this measure as a confounding covariate in our analyses). We evaluated task-related activations in both stuttering subjects and age- and gender-matched controls.

Areas that were either uniquely activated during fluency-evoking conditions, or in which the magnitude of activation was significantly greater during fluency-evoking than dysfluency-evoking tasks included auditory association areas that process speech and voice and motor regions related to control of the larynx and oral articulators. This suggests that a common fluency-evoking mechanism might relate to more effective coupling of auditory and motor systems — that is, more efficient self-monitoring, allowing motor areas to more effectively modify speech.

These effects were seen in both PWS and controls, suggesting that they are due to the sensorimotor or cognitive demands of the fluency-evoking tasks themselves. While responses seen in both groups were bilateral, however, the fluency-evoking tasks elicited more robust activation of auditory and motor regions within the left hemisphere of stuttering subjects, suggesting a role for the left hemisphere in compensatory processes that enable fluency.

Educational objectives: The reader will learn about and be able to: (1) compare brain activation patterns under fluency- and dysfluency-evoking conditions in stuttering and control subjects; (2) appraise the common features, both central and peripheral, of fluency-evoking conditions; and (3) discuss ways in which neuroimaging methods can be used to understand the pathophysiology of stuttering.  相似文献   


4.
Regional cerebral blood flow (rCBF) was measured by the xenon-133 inhalation method in 10 cerebrally healthy subjects at rest and during linguistic activation tests. These consisted of a comprehension test (binaural listening to a narrative text) and a speech test (making sentences from a list of words presented orally at 30-s intervals). The comprehension task induced a moderate increase in the mean right CBF and in both inferior parietal areas, whereas the speech test resulted in a diffuse increase in the mean CBF of both hemispheres, predominating regionally in both inferior parietal, left operculary, and right upper motor and premotor areas. It is proposed that the activation pattern induced by linguistic stimulation depends on not only specific factors, such as syntactic and semantic aspects of language, but also the contents of the material proposed and the attention required by the test situation.  相似文献   

5.
Functional magnetic resonance imaging was used to investigate the neural correlates of passive listening, habitual speech and two modified speech patterns (simulated stuttering and prolonged speech) in stuttering and nonstuttering adults. Within-group comparisons revealed increased right hemisphere biased activation of speech-related regions during the simulated stuttered and prolonged speech tasks, relative to the habitual speech task, in the stuttering group. No significant activation differences were observed within the nonstuttering participants during these speech conditions. Between-group comparisons revealed less left superior temporal gyrus activation in stutterers during habitual speech and increased right inferior frontal gyrus activation during simulated stuttering relative to nonstutterers. Stutterers were also found to have increased activation in the left middle and superior temporal gyri and right insula, primary motor cortex and supplementary motor cortex during the passive listening condition relative to nonstutterers. The results provide further evidence for the presence of functional deficiencies underlying auditory processing, motor planning and execution in people who stutter, with these differences being affected by speech manner.  相似文献   

6.
We used H(2)15O PET to characterize the common features of two successful but markedly different fluency-evoking conditions -- paced speech and singing -- in order to identify brain mechanisms that enable fluent speech in people who stutter. To do so, we compared responses under fluency-evoking conditions with responses elicited by tasks that typically elicit dysfluent speech (quantifying the degree of stuttering and using this measure as a confounding covariate in our analyses). We evaluated task-related activations in both stuttering subjects and age- and gender-matched controls. Areas that were either uniquely activated during fluency-evoking conditions, or in which the magnitude of activation was significantly greater during fluency-evoking than dysfluency-evoking tasks included auditory association areas that process speech and voice and motor regions related to control of the larynx and oral articulators. This suggests that a common fluency-evoking mechanism might relate to more effective coupling of auditory and motor systems -- that is, more efficient self-monitoring, allowing motor areas to more effectively modify speech. These effects were seen in both PWS and controls, suggesting that they are due to the sensorimotor or cognitive demands of the fluency-evoking tasks themselves. While responses seen in both groups were bilateral, however, the fluency-evoking tasks elicited more robust activation of auditory and motor regions within the left hemisphere of stuttering subjects, suggesting a role for the left hemisphere in compensatory processes that enable fluency. EDUCATIONAL OBJECTIVES: The reader will learn about and be able to: (1) compare brain activation patterns under fluency- and dysfluency-evoking conditions in stuttering and control subjects; (2) appraise the common features, both central and peripheral, of fluency-evoking conditions; and (3) discuss ways in which neuroimaging methods can be used to understand the pathophysiology of stuttering.  相似文献   

7.
Functional imaging studies have delineated a "minimal network for overt speech production", encompassing mesiofrontal structures (supplementary motor area, anterior cingulate gyrus), bilateral pre- and postcentral convolutions, extending rostrally into posterior parts of the inferior frontal gyrus (IFG) of the language-dominant hemisphere, left anterior insula as well as bilateral components of the basal ganglia, the cerebellum, and the thalamus. In order to further elucidate the specific contribution of these cerebral regions to speech motor planning, subjects were asked to read aloud visually presented bisyllabic pseudowords during functional magnetic resonance imaging (fMRI). The test stimuli systematically varied in onset complexity (CCV versus CV) and frequency of occurrence (high-frequency, HF versus low-frequency, LF) of the initial syllable. A cognitive subtraction approach revealed a significant main effect of syllable onset complexity (CCV versus CV) at the level of left posterior IFG, left anterior insula, and both cerebellar hemispheres. Conceivably, these areas closely cooperate in the sequencing of subsyllabic aspects of the sound structure of verbal utterances. A significant main effect of syllable frequency (LF versus HF), by contrast, did not emerge. However, calculation of the time series of hemodynamic activation within the various cerebral structures engaged in speech motor control revealed this factor to enhance functional connectivity between Broca's area and ipsilateral anterior insula.  相似文献   

8.
言语想象不仅在大脑预处理机制方面起到重要的作用,还是目前脑机接口领域研究的热点。与正常言语产生过程相比,言语想象的理论模型、激活脑区、神经传导路径等均与其有较多相似之处。而言语障碍群体的言语想象、想象有意义的词语和句子时的脑神经机制与正常言语产生存在差异。鉴于人类言语系统的复杂性,言语想象的神经机制研究还面临一系列挑战,未来研究可在言语想象质量评价工具及神经解码范式、脑控制回路、激活通路、言语障碍群体的言语想象机制、词语和句子想象的脑神经信号等方面进一步探索,为有效提高脑机接口的识别率提供依据,为言语障碍群体的沟通提供便利。  相似文献   

9.
Inhibitory control, the ability to suppress irrelevant or interfering stimuli, is a fundamental cognitive function that deteriorates during aging, but little is understood about the bases of decline. Thus, we used event-related functional magnetic resonance imaging (fMRI) to study inhibitory control in healthy adults aged 18 to 78. Activation during "successful inhibition" occurred predominantly in right prefrontal and parietal regions and was more extensive, bilaterally and prefrontally, in the older groups. Presupplementary motor area was also more active in poorer inhibitory performers. Therefore, older adults activate areas that are comparable to those activated by young adults during inhibition, as well as additional regions. The results are consistent with a compensatory interpretation and extend the aging neuroimaging literature into the cognitive domain of inhibition.  相似文献   

10.
Low executive function (EF) during early childhood is a major risk factor for developmental delay, academic failure, and social withdrawal. Susceptible genes may affect the molecular and biological mechanisms underpinning EF. More specifically, genes associated with the regulation of prefrontal dopamine may modulate the response of prefrontal neurons during executive control. Several studies with adults and older children have shown that variants of the catechol‐O‐methyltransferase (COMT) gene are associated with behavioral performance and prefrontal activations in EF tasks. However, the effect of the COMT genotype on prefrontal activations during EF tasks on young children is still unknown. The present study examined whether a common functional polymorphism (Val158Met) in the COMT gene was associated with prefrontal activations and cognitive shifting in 3‐ to 6‐year‐old children. The study revealed that, compared with children with at least one Met allele (Met/Met and Met/Val), children who were Val homozygous (i) were more able to flexibly switch rules in cognitive shifting tasks and (ii) exhibited increased activations in lateral prefrontal regions during these tasks. This is the first evidence that demonstrates the relationship between a gene polymorphism and prefrontal activations in young children. It also indicates that COMT Val homozygosity may be advantageous for cognitive shifting and prefrontal functions, at least during early childhood, and children who possess this variant may have a lower risk of developing future cognitive and social development issues.  相似文献   

11.
To test the hypothesis that stuttering is the product of faulty cerebral laterality four experiments were performed on each of five adult stutterers and five fluent speakers. These tests were: (1) dichotic listening with consonant-vowel pairs, (2) alpha recording over both hemispheres during the performance of cognitive tasks intended to engage preferentially the left or right hemispheres, (3) contingent negative variation with either an articulatory or bilaterally symmetrical response, and (4) readiness potential with the same responses. The results fail to disconfirm the null hypothesis regarding stutterers and their fluent peers. All subjects showed consistent patterns of cerebral laterality indicative of localization of speech function in the left hemisphere. Suggestions are made regarding a possible contribution of deficient sensorimotor integration in stuttering.  相似文献   

12.
The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech motor and auditory brain activity in children who stutter closer to the age at which recovery from stuttering is documented. Rapid sequences may be preferred for individuals or populations who do not tolerate long scanning sessions. In this report, we document the application of a picture naming and phoneme monitoring task in 3 min fMRI sequences with adults who stutter (AWS). If relevant brain differences are found in AWS with these approaches that conform to previous reports, then these approaches can be extended to younger populations. Pairwise contrasts of brain BOLD activity between AWS and normally fluent adults indicated the AWS showed higher BOLD activity in the right inferior frontal gyrus (IFG), right temporal lobe and sensorimotor cortices during picture naming and higher activity in the right IFG during phoneme monitoring. The right lateralized pattern of BOLD activity together with higher activity in sensorimotor cortices is consistent with previous reports, which indicates rapid fMRI sequences can be considered for investigating stuttering in younger participants.Educational objectives: The reader will learn about and be able to describe the: (1) use of functional MRI to study persistent developmental stuttering; (2) differences in brain activation between persons who stutter and normally fluent speakers; and (3) potential benefit of time efficient fMRI sequences combined with a range of speech processing tasks for investigating stuttering in younger populations.  相似文献   

13.
The controversial question of the scope of sensory control in the voluntary motor patterns involved in speech is examined by reviewing studies in which the auditory, tactile, and proprioceptive feedback channels have been distorted or interrupted. The author makes a case for open loop control of well-learned speech patterns under normal circumstances. The concept of internal feedback is introduced as a possible control system of skilled speech, whereas response feedback and external feedback are viewed as necessary for children developing speech or adults learning new speech patterns.  相似文献   

14.
The functional neuroanatomy of prelexical processing in speech perception   总被引:7,自引:0,他引:7  
Scott SK  Wise RJ 《Cognition》2004,92(1-2):13-45
In this paper we attempt to relate the prelexical processing of speech, with particular emphasis on functional neuroimaging studies, to the study of auditory perceptual systems by disciplines in the speech and hearing sciences. The elaboration of the sound-to-meaning pathways in the human brain enables their integration into models of the human language system and the definition of potential auditory processing differences between the two cerebral hemispheres. Further, it facilitates comparison with recent developments in the study of the anatomy of non-human primate auditory cortex, which has very precisely revealed architectonically distinct regions, connectivity, and functional specialization.  相似文献   

15.
The controversial question of the scope of sensory control in the voluntary motor patterns involved in speech is examined by reviewing studies in which the auditory, tactile, and proprioceptive feedback channels have been distorted or interrupted. The author makes a case for open loop control of well-learned speech patterns under normal circumstances. The concept of internal feedback is introduced as a possible control system of skilled speech, whereas response feedback and external feedback are viewed as necessary for children developing speech or adults learning new speech patterns.  相似文献   

16.
The lateralization of motor speech function to the left hemisphere is supported by multiple lines of evidence, but relatively little is known about the anatomical basis of that specialization. In a preliminary study, we recently reported that area 45 of the left hemisphere (Broca′s area) contained a subpopulation of magnopyramidal neurons which were significantly larger than any seen in the homotopic region of the right hemisphere (Hayes and Lewis, 1993a). In the present study we examined a larger sample of cases in order to determine how consistently this difference is present in the population, if it is specific to Broca′s area or is a general feature of cortical regions mediating lateralized functions, and whether the subpopulation of large magnopyramidal neurons in left area 45 can be distinguished by their chemical phenotype. In Nissl-stained sections from 19 human brains, the mean (±SD) cross-sectional area of the largest layer III pyramidal neurons in area 45 was significantly (p < .0001) greater in the left hemisphere (522.1 ± 128.3 μm2) than in the right (454.1 ± 121.5 μm2). This interhemispheric difference appeared to be a unique characteristic of the largest neurons, since the mean size of all layer III pyramids in this area was not significantly different in the left (206.2 ± 93.5 μm2) and right (213.3 ± 103.9 μm2) hemispheres. In contrast to area 45, there was no interhemispheric difference in the mean cross-sectional area of the largest layer III pyramids in another lateralized region, primary motor cortex. in addition, in area 46, a region of prefrontal association cortex not known to be functionally lateralized, the mean somal size of the largest layer III pyramidal neurons was significantly (p < .001) smaller in the left hemisphere (402.4 ± 84.9 μm2) than in the right (437.8 ± 88.3 μm2). Finally, although the large layer III pyramids in area 45 were immunoreactive for nonphosphorylated neurofilament protein in both hemispheres, the mean cross-sectional area of the largest labeled neurons was significantly larger (p < .002) in the left hemisphere (525.2 ± 149.0 μm2) than in the right (490.3 ± 154.1 μm2). These findings demonstrate that layer III of Broca′s area contains a distinctive subpopulation of neurons that may play an important role in the specific functional architecture of this region.  相似文献   

17.
Prior to an intensive behavioral treatment program, stutterers showed greater than normal activation of the posterior frontal region of the right hemisphere during the performance of speech tasks. After treatment they showed increases in proportional alpha for most regions of the two cerebral hemispheres, but most markedly for the posterior frontal region of the right hemisphere for both verbal and nonverbal tasks. This increase resulted in a reversal of the previous R/L interhemispheric alpha relationships with the left posterior frontal region showing greater activation during speech after treatment. The relationship of this finding to previous findings is briefly discussed and an hypothesis of decreased inhibitory control of the right hemisphere at the posterior frontal region by the left hemisphere during speech in stutterers is proposed and briefly expounded.  相似文献   

18.
Using regional cerebral blood flow as an index of cerebral activity we studied dyslexic and control subjects during simple word reading tasks. The groups were pre-tested for reading skill and the dyslexic group had a lower reading performance but could read and comprehend standard texts. The aim was to elucidate differences in the cerebral activation pattern during reading. The tasks were simple enough that performance differences between the groups could be excluded. We found specific differences between the two groups that were dependent on the language task. When the visual route for language information was used, minor qualitative differences were found between the groups pertaining to the dominant hemisphere. Increasing the complexity of the task by using pseudowords activated the left frontal region more in the dyslexic group than in the control group. A similar effect was seen in a minor region in extrastriate lateral occipital cortex (BA 19). This finding indicates that the dyslexics used areas in these regions that the controls did not. On the other hand, the dyslexics activated less in the right angular gyrus, right dorsolateral prefrontal cortex, and in the right pallidum. Reading skill correlated with the level of activity in the right frontal cortex. We conclude, that cerebral activation pattern elicited by reading is different in dyslexics compared to controls in spite of an almost complete functional compensation.  相似文献   

19.
This acoustic-perceptual, multiple-case study of the Rhythm Rule (RR) in English, a phonological phenomenon whereby adjacent stresses are adjusted to avoid “stress clash” (e.g.,thirTEENvsTHIRteen MEN), was undertaken to identify the locus of functional impairments in speech prosody in different aphasic syndromes. Subjects included two left brain-damaged aphasic patients (1 fluent, 1 nonfluent), one right brain-damaged nonaphasic patient, and one nonneurological control. They were instructed to read sentences including experimental (bisyllabic “double-stressed” words) and matching control (bisyllabic “initial-stressed” words) phrases of increasing length. Results of acoustic and perceptual measures indicated that rhythmic disturbances associated with the RR emerged regardless of lesion site. The locus of functional impairment was isolated to phonetic implementation of the RR, as opposed to either loss of word-level stress or loss of the RR. Findings suggest that neural substrates of speech prosody are broadly distributed in the left and right cerebral hemispheres.  相似文献   

20.
Visual system has been proposed to be divided into two, the ventral and dorsal, processing streams. The ventral pathway is thought to be involved in object identification whereas the dorsal pathway processes information regarding the spatial locations of objects and the spatial relationships among objects. Several studies on working memory (WM) processing have further suggested that there is a dissociable domain-dependent functional organization within the prefrontal cortex for processing of spatial and nonspatial visual information. Also the auditory system is proposed to be organized into two domain-specific processing streams, similar to that seen in the visual system. Recent studies on auditory WM have further suggested that maintenance of nonspatial and spatial auditory information activates a distributed neural network including temporal, parietal, and frontal regions but the magnitude of activation within these activated areas shows a different functional topography depending on the type of information being maintained. The dorsal prefrontal cortex, specifically an area of the superior frontal sulcus (SFS), has been shown to exhibit greater activity for spatial than for nonspatial auditory tasks. Conversely, ventral frontal regions have been shown to be more recruited by nonspatial than by spatial auditory tasks. It has also been shown that the magnitude of this dissociation is dependent on the cognitive operations required during WM processing. Moreover, there is evidence that within the nonspatial domain in the ventral prefrontal cortex, there is an across-modality dissociation during maintenance of visual and auditory information. Taken together, human neuroimaging results on both visual and auditory sensory systems support the idea that the prefrontal cortex is organized according to the type of information being maintained in WM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号