首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
A central question in online human sentence comprehension is, “How are linguistic relations established between different parts of a sentence?” Previous work has shown that this dependency resolution process can be computationally expensive, but the underlying reasons for this are still unclear. This article argues that dependency resolution is mediated by cue‐based retrieval, constrained by independently motivated working memory principles defined in a cognitive architecture. To demonstrate this, this article investigates an unusual instance of dependency resolution, the processing of negative and positive polarity items, and confirms a surprising prediction of the cue‐based retrieval model: Partial‐cue matches—which constitute a kind of similarity‐based interference—can give rise to the intrusion of ungrammatical retrieval candidates, leading to both processing slow‐downs and even errors of judgment that take the form of illusions of grammaticality in patently ungrammatical structures. A notable achievement is that good quantitative fits are achieved without adjusting the key model parameters.  相似文献   

2.
    
Computational cognitive models of spatial memory often neglect difficulties posed by the real world, such as sensory noise, uncertainty, and high spatial complexity. On the other hand, robotics is unconcerned with understanding biological cognition. Here, we describe a computational framework for robotic architectures aiming to function in realistic environments, as well as to be cognitively plausible.We motivate and describe several mechanisms towards achieving this despite the sensory noise and spatial complexity inherent in the physical world. We tackle error accumulation during path integration by means of Bayesian localization, and loop closing with sequential gradient descent. Finally, we outline a method for structuring spatial representations using metric learning and clustering. Crucially, unlike the algorithms of traditional robotics, we show that these mechanisms can be implemented in neuronal or cognitive models.We briefly outline a concrete implementation of the proposed framework as part of the LIDA cognitive architecture, and argue that this kind of probabilistic framework is well-suited for use in cognitive robotic architectures aiming to combine spatial functionality and psychological plausibility.  相似文献   

3.
4.
Much of cognitive psychology focuses on effects measured in tens of milliseconds while significant educational outcomes take tens of hours to achieve. The task of bridging this gap is analyzed in terms of Newell's (1990) bands of cognition—the Biological, Cognitive, Rational, and Social Bands. The 10 millisecond effects reside in his Biological Band while the significant learning outcomes reside in his Social Band. The paper assesses three theses: The Decomposition Thesis claims that learning occurring at the Social Band can be reduced to learning occurring at lower bands. The Relevance Thesis claims that instructional outcomes at the Social Band can be improved by paying attention to cognition at the lower bands. The Modeling Thesis claims that cognitive modeling provides a basis for bridging between events on the small scale and desired outcomes on the large scale. The unit‐task level, at the boundary of the Cognitive and Rational Bands, is useful for assessing these theses. There is good evidence for all three theses in efforts that bridge from the unit‐task level to educational applications. While there is evidence for the Decomposition Thesis all the way down to the 10 millisecond level, more work needs to be done to establish the Relevance Thesis and particularly the Modeling Thesis at the lower levels.  相似文献   

5.
    
This paper addresses a common challenge with computational cognitive models: identifying parameter values that are both theoretically plausible and generate predictions that match well with empirical data. While computational models can offer deep explanations of cognition, they are computationally complex and often out of reach of traditional parameter fitting methods. Weak methodology may lead to premature rejection of valid models or to acceptance of models that might otherwise be falsified. Mathematically robust fitting methods are, therefore, essential to the progress of computational modeling in cognitive science. In this article, we investigate the capability and role of modern fitting methods—including Bayesian optimization and approximate Bayesian computation—and contrast them to some more commonly used methods: grid search and Nelder–Mead optimization. Our investigation consists of a reanalysis of the fitting of two previous computational models: an Adaptive Control of Thought—Rational model of skill acquisition and a computational rationality model of visual search. The results contrast the efficiency and informativeness of the methods. A key advantage of the Bayesian methods is the ability to estimate the uncertainty of fitted parameter values. We conclude that approximate Bayesian computation is (a) efficient, (b) informative, and (c) offers a path to reproducible results.  相似文献   

6.
7.
    
The ability to reason and problem-solve in novel situations, as measured by the Raven's Advanced Progressive Matrices (RAPM), is highly predictive of both cognitive task performance and real-world outcomes. Here we provide evidence that RAPM performance depends on the ability to reallocate attention in response to self-generated feedback about progress. We propose that such an ability is underpinned by the basal ganglia nuclei, which are critically tied to both reward processing and cognitive control. This hypothesis was implemented in a neurocomputational model of the RAPM task, which was used to derive novel predictions at the behavioral and neural levels. These predictions were then verified in one neuroimaging and two behavioral experiments. Furthermore, an effective connectivity analysis of the neuroimaging data confirmed a role for the basal ganglia in modulating attention. Taken together, these results suggest that individual differences in a neural circuit related to reward processing underpin human fluid reasoning abilities.  相似文献   

8.
    
The informativity of a computational model of language acquisition is directly related to how closely it approximates the actual acquisition task, sometimes referred to as the model's cognitive plausibility. We suggest that though every computational model necessarily idealizes the modeled task, an informative language acquisition model can aim to be cognitively plausible in multiple ways. We discuss these cognitive plausibility checkpoints generally and then apply them to a case study in word segmentation, investigating a promising Bayesian segmentation strategy. We incorporate cognitive plausibility by using an age‐appropriate unit of perceptual representation, evaluating the model output in terms of its utility, and incorporating cognitive constraints into the inference process. Our more cognitively plausible model shows a beneficial effect of cognitive constraints on segmentation performance. One interpretation of this effect is as a synergy between the naive theories of language structure that infants may have and the cognitive constraints that limit the fidelity of their inference processes, where less accurate inference approximations are better when the underlying assumptions about how words are generated are less accurate. More generally, these results highlight the utility of incorporating cognitive plausibility more fully into computational models of language acquisition.  相似文献   

9.
    
Previous accounts of cognitive skill acquisition have demonstrated how procedural knowledge can be obtained and transformed over time into skilled task performance. This article focuses on a complementary aspect of skill acquisition, namely the integration and reuse of previously known component skills. The article posits that, in addition to mechanisms that proceduralize knowledge into more efficient forms, skill acquisition requires tight integration of newly acquired knowledge and previously learned knowledge. Skill acquisition also benefits from reuse of existing knowledge across disparate task domains, relying on indexicals to reference and share necessary information across knowledge components. To demonstrate these ideas, the article proposes a computational model of skill acquisition from instructions focused on integration and reuse, and applies this model to account for behavior across seven task domains.  相似文献   

10.
    
The objective of this paper is to propose some new approaches that could be used in the research of the development of mindreading in infancy. I argue that the mentalizing system should be approached as a developing hierarchical structure that acquires the ability to orient attention to the most significant features in the environment. The development of this system could be described by a series of implicit theories that share a common structure which provides continuity over theory change. According to this view, the early stages which have a fundamental role for the development of mindreading would be described by low-level theories, but as infants become increasingly efficient in predicting behavior of observed agents the higher-order entities become prioritized due to their relevance. Infants thus gradually develop the ability to predict the behavior of others in situations involving attribution of mental states. I propose a strategy based on the analysis of attention deployment that could help to decide which of the alternative theories provides the most adequate account of the mentalizing system at a certain developmental stage. I also suggest that computational modeling could contribute to the research in this area. Simulations of looking behavior based on different ontologies could prove to be useful for choosing the most adequate theory as well as for advancing the understanding of mechanisms involved in the development of theory of mind.  相似文献   

11.
Computational Cognitive Neuroscience (CCN) is a new field that lies at the intersection of computational neuroscience, machine learning, and neural network theory (i.e., connectionism). The ideal CCN model should not make any assumptions that are known to contradict the current neuroscience literature and at the same time provide good accounts of behavior and at least some neuroscience data (e.g., single-neuron activity, fMRI data). Furthermore, once set, the architecture of the CCN network and the models of each individual unit should remain fixed throughout all applications. Because of the greater weight they place on biological accuracy, CCN models differ substantially from traditional neural network models in how each individual unit is modeled, how learning is modeled, and how behavior is generated from the network. A variety of CCN solutions to these three problems are described. A real example of this approach is described, and some advantages and limitations of the CCN approach are discussed.  相似文献   

12.
Since the experiments of Saffran et al. [Saffran, J., Aslin, R., & Newport, E. (1996). Statistical learning in 8-month-old infants. Science, 274, 1926-1928], there has been a great deal of interest in the question of how statistical regularities in the speech stream might be used by infants to begin to identify individual words. In this work, we use computational modeling to explore the effects of different assumptions the learner might make regarding the nature of words - in particular, how these assumptions affect the kinds of words that are segmented from a corpus of transcribed child-directed speech. We develop several models within a Bayesian ideal observer framework, and use them to examine the consequences of assuming either that words are independent units, or units that help to predict other units. We show through empirical and theoretical results that the assumption of independence causes the learner to undersegment the corpus, with many two- and three-word sequences (e.g. what’s that, do you, in the house) misidentified as individual words. In contrast, when the learner assumes that words are predictive, the resulting segmentation is far more accurate. These results indicate that taking context into account is important for a statistical word segmentation strategy to be successful, and raise the possibility that even young infants may be able to exploit more subtle statistical patterns than have usually been considered.  相似文献   

13.
    
How children go about learning the general regularities that govern language, as well as keeping track of the exceptions to them, remains one of the challenging open questions in the cognitive science of language. Computational modeling is an important methodology in research aimed at addressing this issue. We must determine appropriate learning mechanisms that can grasp generalizations from examples of specific usages, and that exhibit patterns of behavior over the course of learning similar to those in children. Early learning of verb argument structure is an area of language acquisition that provides an interesting testbed for such approaches due to the complexity of verb usages. A range of linguistic factors interact in determining the felicitous use of a verb in various constructions —associations between syntactic forms and properties of meaning that form the basis for a number of linguistic and psycholinguistic theories of language. This article presents a computational model for the representation, acquisition, and use of verbs and constructions. The Bayesian framework is founded on a novel view of constructions as a probabilistic association between syntactic and semantic features. The computational experiments reported here demonstrate the feasibility of learning general constructions, and their exceptions, from individual usages of verbs. The behavior of the model over the timecourse of acquisition mimics, in relevant aspects, the stages of learning exhibited by children. Therefore, this proposal sheds light on the possible mechanisms at work in forming linguistic generalizations and maintaining knowledge of exceptions.  相似文献   

14.
    
Older and younger adults' abilities to use context information rapidly during ambiguity resolution were investigated. In Experiments 1 and 2, younger and older adults heard ambiguous words (e.g., fires) in sentences where the preceding context supported either the less frequent or more frequent meaning of the word. Both age groups showed good context use in offline tasks, but only young adults demonstrated rapid use of context in cross-modal naming. A 3rd experiment demonstrated that younger and older adults had similar knowledge about the contexts used in Experiments 1 and 2. The experiment results were simulated in 2 computational models in which different patterns of context use were shown to emerge from varying a single speed parameter. These results suggest that age-related changes in processing efficiency can modulate context use during language comprehension.  相似文献   

15.
    
CORTEX is a cognitive robotics architecture inspired by three key ideas: modularity, internal modelling and graph representations. CORTEX is also a computational framework designed to support early forms of intelligence in real world, human interacting robots, by selecting an a priori functional decomposition of the capabilities of the robot. This set of abilities was then translated to computational modules or agents, each one built as a network of software interconnected components. The nature of these agents can range from pure reactive modules connected to sensors and/or actuators, to pure deliberative ones, but they can only communicate with each other through a graph structure called Deep State Representation (DSR). DSR is a short-term dynamic representation of the space surrounding the robot, the objects and the humans in it, and the robot itself. All these entities are perceived and transformed into different levels of abstraction, ranging from geometric data to high-level symbolic relations such as “the person is talking and gazing at me”. The combination of symbolic and geometric information endows the architecture with the potential to simulate and anticipate the outcome of the actions executed by the robot. In this paper we present recent advances in the CORTEX architecture and several real-world human-robot interaction scenarios in which they have been tested. We describe our interpretation of the ideas inspiring the architecture and the reasons why this specific computational framework is a promising architecture for the social robots of tomorrow.  相似文献   

16.
The psycholinguistic literature has identified two syntactic adaptation effects in language production: rapidly decaying short-term priming and long-lasting adaptation. To explain both effects, we present an ACT-R model of syntactic priming based on a wide-coverage, lexicalized syntactic theory that explains priming as facilitation of lexical access. In this model, two well-established ACT-R mechanisms, base-level learning and spreading activation, account for long-term adaptation and short-term priming, respectively. Our model simulates incremental language production and in a series of modeling studies, we show that it accounts for (a) the inverse frequency interaction; (b) the absence of a decay in long-term priming; and (c) the cumulativity of long-term adaptation. The model also explains the lexical boost effect and the fact that it only applies to short-term priming. We also present corpus data that verify a prediction of the model, that is, that the lexical boost affects all lexical material, rather than just heads.  相似文献   

17.
    
New technologies based on artificial agents promise to change the next generation of autonomous systems and therefore our interaction with them. Systems based on artificial agents such as self-driving cars and social robots are examples of this technology that is seeking to improve the quality of people’s life. Cognitive architectures aim to create some of the most challenging artificial agents commonly known as bio-inspired cognitive agents. This type of artificial agent seeks to embody human-like intelligence in order to operate and solve problems in the real world as humans do. Moreover, some cognitive architectures such as Soar, LIDA, ACT-R, and iCub try to be fundamental architectures for the Artificial General Intelligence model of human cognition. Therefore, researchers in the machine ethics field face ethical questions related to what mechanisms an artificial agent must have for making moral decisions in order to ensure that their actions are always ethically right. This paper aims to identify some challenges that researchers need to solve in order to create ethical cognitive architectures. These cognitive architectures are characterized by the capacity to endow artificial agents with appropriate mechanisms to exhibit explicit ethical behavior. Additionally, we offer some reasons to develop ethical cognitive architectures. We hope that this study can be useful to guide future research on ethical cognitive architectures.  相似文献   

18.
The purpose of the popular Iowa gambling task is to study decision making deficits in clinical populations by mimicking real-life decision making in an experimental context. Busemeyer and Stout [Busemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara gambling task. Psychological Assessment, 14, 253-262] proposed an “Expectancy Valence” reinforcement learning model that estimates three latent components which are assumed to jointly determine choice behavior in the Iowa gambling task: weighing of wins versus losses, memory for past payoffs, and response consistency. In this article we explore the statistical properties of the Expectancy Valence model. We first demonstrate the difficulty of applying the model on the level of a single participant, we then propose and implement a Bayesian hierarchical estimation procedure to coherently combine information from different participants, and we finally apply the Bayesian estimation procedure to data from an experiment designed to provide a test of specific influence.  相似文献   

19.
    
When we try to identify causal relationships, how strong do we expect that relationship to be? Bayesian models of causal induction rely on assumptions regarding people’s a priori beliefs about causal systems, with recent research focusing on people’s expectations about the strength of causes. These expectations are expressed in terms of prior probability distributions. While proposals about the form of such prior distributions have been made previously, many different distributions are possible, making it difficult to test such proposals exhaustively. In Experiment 1 we used iterated learning—a method in which participants make inferences about data generated based on their own responses in previous trials—to estimate participants’ prior beliefs about the strengths of causes. This method produced estimated prior distributions that were quite different from those previously proposed in the literature. Experiment 2 collected a large set of human judgments on the strength of causal relationships to be used as a benchmark for evaluating different models, using stimuli that cover a wider and more systematic set of contingencies than previous research. Using these judgments, we evaluated the predictions of various Bayesian models. The Bayesian model with priors estimated via iterated learning compared favorably against the others. Experiment 3 estimated participants’ prior beliefs concerning different causal systems, revealing key similarities in their expectations across diverse scenarios.  相似文献   

20.
Most psychological theories treat the features of objects as being fixed and immediately available to observers. However, novel objects have an infinite array of properties that could potentially be encoded as features, raising the question of how people learn which features to use in representing those objects. We focus on the effects of distributional information on feature learning, considering how a rational agent should use statistical information about the properties of objects in identifying features. Inspired by previous behavioral results on human feature learning, we present an ideal observer model based on nonparametric Bayesian statistics. This model balances the idea that objects have potentially infinitely many features with the goal of using a relatively small number of features to represent any finite set of objects. We then explore the predictions of this ideal observer model. In particular, we investigate whether people are sensitive to how parts co-vary over objects they observe. In a series of four behavioral experiments (three using visual stimuli, one using conceptual stimuli), we demonstrate that people infer different features to represent the same four objects depending on the distribution of parts over the objects they observe. Additionally in all four experiments, the features people infer have consequences for how they generalize properties to novel objects. We also show that simple models that use the raw sensory data as inputs and standard dimensionality reduction techniques (principal component analysis and independent component analysis) are insufficient to explain our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号