首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
In this article, we report an atomic force microscopy study on the microstructure and the deposition-rate dependence of granular size distribution in copper (Cu) ramified aggregates on a liquid substrate. This study shows that the ramified Cu aggregates are composed of Gaussian size distribution granules, which form immediately after the Cu atoms are deposited. The interesting phenomenon is that the mean diameter Φm of the granules exponentially decays and approaches a stable value Φc with an increase in the deposition rate f. The granular mean diameter Φm slightly changes with the time interval Δt during which the film is kept in the vacuum chamber, owing to the large diffusion coefficient of the Cu granules on the liquid substrates. The experimental behavior strongly depends on the properties of the liquid substrate.  相似文献   

2.
Atomic force microscopy of dislocation etch pit structures is a convenient means of characterising the dislocation structure in etchable materials at high resolution for dislocation spacing extending down to 25 nm . This is demonstrated for single crystals of CaF2. The local deformation zone generated around nanoindents at ambient temperature and the low-angle boundaries generated in the bulk during uniaxial compression at elevated temperatures are presented as examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号