首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The nucleation and growth of a nano-icosahedral phase from a supercooled liquid region of Zr65Al7.5Ni10Cu7.5M10 (M = Ag or Pd) glasses have been examined by differential scanning calorimetry and transmission electron microscopy. The growth rate of the icosahedral phase is nearly constant at the initial stage and much slower than that of the Zr2Ni phase in the Zr65Al7.5Ni10Cu17.5 metallic glass. The homogeneous nucleation rate has a maximum value of 4.4 x 1020 m-3 s-1 at 695 K in the Zr65Al7.5Ni10Cu7.5Ag10 glass, which is approximately 102 times higher than that for the formation of quasicrystalline phase in the Zr69.5Al7.5Ni11Cu12 glass and 104 times higher than that of the Zr2Ni phase in the Zr65Al7.5Ni10Cu17.5 glass. With increasing Pd content, the nucleation rate of the primary phase increases significantly and the growth rate decreases at the crystallization temperature. Thus, the addition of Ag and Pd is effective for an increase in the number of nucleation sites and the suppression of grain growth, which is the main reason for the formation of icosahedral nanoparticles. The significant increase in the nucleation rate is due to an increase in the number of nucleation sites resulting from the short-range ordering consisting of Zr-(Ag or Pd) strong pairs. It is implied that the strong pair Zr-(Ag or Pd) also contributes to the restraint of the long-range rearrangements of the constitutional elements. The formation of the nanoicosahedral phase suggests that icosahedral short-range order exists in the glassy state in the present alloys.  相似文献   

2.
The local structure of Zr70Al9Ni20Pd1 metallic glass, in which a nano-icosahedral quasi-crystalline phase (I-phase) is formed in the primary stage of crystallization, has been examined and compared with that of Zr70Al10Ni20, the supercooled liquid state of which has a high stability. Since the local environments around the Zr and Ni atoms do not change drastically by the addition of 1 at.% Pd to Zr70Al10Ni20, as evidenced by radial distribution function (RDF) and extended x-ray absorption fine structure (EXAFS) studies, we deduce that the icosahedral phase formed in the Zr70Al9Ni20Pd1 metallic glass has a local structure similar to that in Zr70Al10Ni20. Although a very slight rearrangement of Zr–Zr atomic pairs occurs during quasi-crystallization, the I-phase formation is achieved without disturbing the dominant local structure in the glassy state of the Zr70Al9Ni20Pd1. An icosahedral local structure is proposed for Zr–Al–Ni metallic glass system as well as for primary quasi-crystal (QC)-forming Zr-based metallic glasses.  相似文献   

3.

The formation and thermal stability of an icosahedral quasicrystalline phase in an annealed Zr65Al7.5Ni10Cu12.5Ag5 metallic glass have been investigated by X-ray diffraction and transmission electron microscopy analyses. It was found that the quasicrystalline phase can precipitate from the glassy state and the supercooled liquid of the alloy over a wide range of annealing temperatures. After optimizing the heat-treatment conditions, the volume fraction of the quasicrystalline phase in the alloy can reach as high as about 80%. Investigation of the thermal stability of the quasicrystalline phase demonstrates that it is very stable when the annealing temperature is below the glass transformation temperature T g of the alloy.  相似文献   

4.

Single Al-Pd-Re icosahedral quasicrystals with a maximum diameter of 5mm have been grown by a slow cooling method on the basis of a partial phase diagram determined in the present study. Laue X-ray and electron diffraction verified the highly ordered structure of the single icosahedral quasicrystals. The electrical resistivity rho of the single quasicrystals was measured to be 2000- 4000muOmegacm at 300K and 3000-6000muOmegacm at 2K, revealing a negative temperature dependence with a rho4.2K/rho300K value smaller than 2.  相似文献   

5.
A Zr62Cu15.5Al10Ni12.5 bulk metallic glass with a large supercooled liquid region of 90 K, produced by copper-mould casting, exhibits a high strength of 1730 MPa and superior but highly inhomogeneous plasticity under uniaxial compression at ambient temperature. Micro-X-ray diffraction shows that compressive loading facilitates crystallization in the monolithic glassy alloy, resulting in room-temperature plasticity. The plastic deformation of the Zr62Cu15.5Al10Ni12.5 BMG may be attributed to in situ precipitation of nanocrystals during compression in heavily deformed areas.  相似文献   

6.
This paper presents a study of the deformation behaviour of a glassy phase in two Zr-based alloys, Zr65Ni10Cu5Al7.5Pd12.5 and Zr65Al7.5Ni10Pd17.5, performed in situ in a transmission electron microscope. In contrast to the case of shear localisation and formation of 10–20 nm thick shear bands in deformed bulk glassy samples studied earlier, it is found that in thin (electron-transparent) samples the glassy phase in front of a crack deforms more homogeneously and no nanocrystallisation takes place. The reasons for such behaviour are discussed. According to the observed results, one can conclude that the studied metallic glasses can be intrinsically ductile in submicrometre-sized volumes.  相似文献   

7.
The formation of an ω-Al7Cu2Fe phase during laser cladding of quasicrystal-forming Al65Cu23.3Fe11.7 alloy on a pure aluminium substrate is reported. This phase is found to nucleate at the periphery of primary icosahedral-phase particles. A large number of ω-phase particles form an envelope around the icosahedral phase. On the outer side, they form an interface with an α-Al solid solution. Detailed transmission electron microscopic observations show that the ω phase exhibits an orientation relationship with the icosahedral phase. Analysis of experimental results suggests that the ω phase forms by precipitation on an icosahedral phase by heterogeneous nucleation and grows into the aluminium-rich melt until supersaturation is exhausted. The microstructural observations are explained in terms of available models of phase transformations.  相似文献   

8.

The structural complexity of glass-forming alloys, which generally contain more than three components, can lead by partial crystallization during annealing to a dispersion of nanocrystals in an amorphous matrix, giving the material a very high mechanical strength. In the present study, the evolution of the driving force for crystallization is expressed as a function of the composition and the chemical potentials of the components. Application to Zr60Al10Cu30 and Zr60Al10Cu20Pd10 bulk metallic glasses shows that the first crystallization step leads to a metastable equilibrium between nanocrystals of an intermetallic and a percolating amorphous phase. The effects of the number of components and of chemical bonding on the fraction crystallized is analysed and discussed.  相似文献   

9.
Metallic glasses exhibit low viscosity in a temperature range between the glass transition and the crystallization temperature, a feature that allows successful sintering of glassy powders. Microwave heating, being volumetric, has significant advantages over conventional heating in materials processing, such as substantial energy savings, high heating rates and process cleanliness. In the present study, we investigate the stability of Cu50Zr45Al5 glassy powders and the formation of a bulk two-component metallic glassy-crystal sample by microwave heating in a single-mode cavity (915 MHz) in an alternating magnetic field.  相似文献   

10.
A 52 m drop tube has been used to solidify bulk-glass-forming Zr41Ti14Cu12.5Ni10Be22.5 alloy. Glassy balls with different sizes solidified from the droplets whose structural features, glass-transition behaviour and crystallization kinetics have been investigated. The results indicate that the apparent activation energies of the glass transition and main crystallization reaction are significantly different from those of samples prepared by water quenching. The structural difference between the two types of glassy specimen is revealed by compression studies and in situ energy-dispersive X-ray diffraction. The results are important for understanding the structural features of bulk-forming glasses.  相似文献   

11.

Al75Cu17Mg8 is a eutectic composition according to the ternary phase diagram, which can be quenched into a fully amorphous phase by adding 2-8at.% Ni, but the addition of a similar percentage of Gd failed to form the amorphous phase. The amorphous alloys obtained exhibit two broad diffuse peaks in the X-ray diffraction curves and, correspondingly, two halo rings in the electron diffraction patterns, implying that two types of local atom configuration exist. Thermal analysis of the amorphous alloys indicates that the primary crystallization peak shifts to higher temperatures with increasing Ni content. The occurrence of a nucleation and crystal growth peak during isothermal crystallization reveals the amorphous nature of the quenched ribbon alloys. The quenched amorphous ribbons do not break after bending by 180°. Mechanical testing yielded a tensile strength of 810MPa for (Al75Cu17Mg8)95Ni5, and a vein structure, characteristic of amorphous fracture, is apparent in scanning electron micrographs. The different effects of Ni and Gd on the glass formation indicate that the large atomic size of Gd is not critical to the glass formation.  相似文献   

12.
Cast Cu50Zr50 alloy rods with a diameter of 1?mm have been found to consist of a glassy phase containing fine crystalline particles with a size of about 5?nm. They have a glass transition temperature T g of 675?K, and a large supercooled-liquid region extending 57?K above T g. The rods exhibit a high yield strength of 1860?MPa and a Young's modulus of 104?GPa. Because they contain a dispersion of embedded nanocrystals, the as-cast bulk metallic glass rods can sustain a compressive plastic strain at room temperature of more than 50%, an exceptional value which is explicable by compensation of any shear softening by nanocrystal coalescence and pinning of shear bands.  相似文献   

13.

Mechanical alloying of Ti 45 Zr 38 Ni 17 powder mixture forms an amorphous phase, but subsequent annealing causes the formation of an icosahedral ( i ) phase. The maximum hydrogen concentration that can be loaded at 573K at a hydrogen pressure of 3.8MPa is the same (\[H]/\[M] 1.5) for the amorphous and i -phase powders. With hydrogenation, the i -phase is almost stable, forming no hydrides, whereas the amorphous phase transforms to a fcc hydride. The activation energy for hydrogen desorption for the i -phase is about 127kJmol -1, which is lower than that for the amorphous phase, suggesting that the i -phase powder may have better properties for hydrogen-storage applications.  相似文献   

14.

The stability of the F2-(Al-Pd-Mn) phase has been studied by in-situ neutron diffraction on a single quasicrystal with composition Al69.8Pd21.4Mn8.8. We find that the F2 phase is not stable and corresponds to a transient state in the process of the transformation of the icosahedral phase to the F2M phase. The icosahedral-to-F2Mphase transition occurs at around 715oC. In the F2 phase a large amount of diffuse scattering is located close to the icosahedral Bragg reflection in place of the S 1 superstructure reflections characteristic of the F2m phase.  相似文献   

15.

A new stable icosahedral quasicrystal has been found in annealed Cd-Mg-Dy alloys. The composition of the icosahedral phase was determined to be approximately Cd66Mg21Dy13. Powder X-ray and electron diffraction patterns revealed that the phase has a primitive icosahedral lattice with a quasilattice parameter aR = 0.5634 nm. The electron diffraction study confirmed that the phase has a well ordered primitive icosahedral structure.  相似文献   

16.

The phase transitions of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass have been investigated under high pressures and at room temperature. Direct resistance measurements in a diamond anvil cell provide evidence of a reversible transition between amorphous and crystalline phases; crystallization events occurred at 24 and 26.2 GPa on uploading, and crystalline-to-amorphous phase transitions were observed at 16 and 10.6 GPa on downloading. The phase transitions were confirmed by transmission electron microscopy observations.  相似文献   

17.
The kinetic reaction in a Ni-coated Al nanoparticle with equi-atomic fractions and diameter of approximately 4.5 nm is studied by means of molecular dynamics simulation, using a potential of the embedded atom type to model the interatomic interactions. First, the large driving force for the alloying of Ni and Al initiates solid state amorphization of the nanoparticle with the formation of Ni50Al50 amorphous alloy. Amorphization makes intermixing of the components much easier compared to the crystalline state. The average rate of penetration of Ni atoms can be estimated to be about two times higher than Al atoms, whilst the total rate of inter-penetration can be estimated to be of the order of 10?2 m/s. The heat of the intermixing with the formation of Ni50Al50 amorphous alloy can be estimated at approximately ?0.34 eV/at. Next, the crystallization of the Ni50Al50 amorphous alloy into B2-NiAl ordered crystal structure is observed. The heat of the crystallization can be estimated as approximately ?0.08 eV/at. Then, the B2-NiAl ordered nanoparticle melts at a temperature of approximately 1500 K. It is shown that, for the alloying reaction in the initial Ni-coated Al nanoparticle, the ignition temperature can be as low as approximately 200 K, while the adiabatic temperature for the reaction is below the melting temperature of the nanoparticle with the B2-NiAl ordered structure.  相似文献   

18.
Glassy ribbons of Pd–Si alloys were prepared by a combination of melt spinning and flux treatment. The crystallization behaviour of a Pd81Si19 glassy alloy was studied through isothermal annealing at temperatures ranging lower than the glass-transition temperature T g to around the onset of crystallization. The evolution of microstructures arising from isothermal annealing was investigated by X-ray diffraction (XRD) and (high-resolution) transmission electron microscopy ((HR)TEM). XRD spectra showed that, after the sample was annealed at a sub-T g temperature, its first diffraction peak was split into two overlapping broad peaks. TEM analysis revealed the formation of a spherical, particle-like glassy phase embedded in the glassy matrix together with a finely connected network morphology within both. Combining these observations with compositional analysis suggested that phase separation had taken place during sub-T g annealing. When the glassy alloy was annealed at temperatures higher than T g, nanocrystalline structures, composed of Pd3Si and Pd phases plus a Pd9Si2 phase with a lamellar structure, was formed.  相似文献   

19.
A Pd81Si19 bulk metallic glassy rod with a diameter of 4.5 mm was produced by water quenching the fluxed alloy. Despite a negative heat of mixing between Pd and Si elements and very simple components constituting the binary Pd–Si glass-forming system, structural heterogeneity was induced either by slow cooling of a liquid or sub-Tg annealing of glassy ribbons. The sub-Tg annealing experiments evidenced that a more ordered amorphous phase emerged from the original glassy matrix. Our work provides an alternative way to tune the microstructure of metallic glasses by subsequent thermal treatment on an as-prepared single glassy phase.  相似文献   

20.

The first-reported Cu-based icosahedral quasicrystal has been found as an almost single phase in Cu 48 Ga 34 Mg 3 Sc 15 alloy annealed at 1043K for 61h. On the basis of our experiments, this icosahedral quasicrystal is expected to be one of the equilibrium phases in this alloy system. Powder X-ray diffraction and electron diffraction experiments revealed that the quasicrystal exhibits a high degree of structural perfection and has a primitive type quasilattice with a six-dimensional lattice parameter a 6D =0.6938nm. The existence of a Cu 3.7 Ga 2.3 Sc-type structure, which is a bcc structure with diffraction symmetry m3, suggests that the Cu-Ga-Mg-Sc quasicrystal is to be classified into a new structural type to which Cd-based icosahedral quasicrystals and the Zn-Mg-Sc quasicrystal belong. This new type has a characteristic local atomic configuration different from both Mackay-type and Bergman-type quasicrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号