首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Using atomistic simulation, the indentation of single-crystalline Cu is investigated for both an ideal and a stepped (111) surface. Both systems exhibit an intermediate regime of reversible plasticity, characterized by the formation of extended stacking faults, which heal entirely upon withdrawal of the indenter. This regime can be employed to clarify the role of pure stacking fault generation and cross-slip in plasticity. Its existence reveals that, on the atomistic scale, plastic deformation is characterized by material transport rather than by the nucleation of stacking faults. Finally, we establish a criterion–based on the total displacement of particles–to determine after which indentation depth plasticity is generated irreversibly in the material.  相似文献   

2.
The nanoindentation response of a piezoelectric material is, in general, influenced in a complex manner by its elastic, dielectric and piezoelectric properties. The present study is focused on obtaining a comprehensive understanding of the dominant material factors influencing the force–depth mechanical indentation response and the charge–depth electrical indentation response of piezoelectric materials. From a large number of three-dimensional finite element simulations of the indentation of simple and complex piezoelectric materials (such as PZT-5A and relaxor ferroelectrics), the following principal conclusions are obtained: (1) For indentations with both conducting and insulating indenters, the mechanical indentation stiffness is influenced more by the elastic properties, while the electrical indentation stiffness is influenced largely by the piezoelectric properties of the indented materials. (2) For longitudinal indentations using a conducting indenter, the elastic constants, C 33 and C 13, and piezoelectric constants, e33 and e15, are, respectively, the first and second most dominant material constants that influence the mechanical indentation stiffness and the electrical indentation stiffness. (3) For transverse indentations using a conducting indenter, the elastic constants, C 11 and C 12, are, respectively, the first and second most dominant material constants that influence the mechanical indentation stiffness. (4) In the indentation of relaxor ferroelectrics based on PMN-xPT and PZN-xPT, which exhibit a range of elastic, dielectric and piezoelectric properties, it is generally observed that materials with higher normal elastic and piezoelectric constants, i.e., C 33 and e33, respectively, exhibit higher mechanical and electrical indentation stiffnesses.  相似文献   

3.
Through pressure measurement and underwater motion capture analysis, this study aimed to elucidate the effects of hand paddles on hand propulsive forces, mechanical power, and Froude efficiency in arm-stroke-only front-crawl swimming at various velocities. Eight male swimmers swam under two conditions in randomized order, once using only their hands and once aided by hand paddles on both hands. Each participant swam 10 times a distance of 16 m in each condition, for a total of 20 trials. To elucidate the relationship between propulsive forces and swimming velocity, each participant was instructed to swim each of the two sets of 10 trials at an arbitrarily different swimming velocity. During the trials, pressure sensors and underwater motion capture cameras were used together to analyze the pressure forces acting on the hand and hand kinematics, respectively. Six pressure sensors were attached to the right hand, and pressure forces acting on the right hand were estimated by multiplying the areas with the pressure differences between the palm and dorsal side of the hand. Acting directions of pressure forces were analyzed using a normal vector perpendicular to the hand or hand paddle, calculated from coordinates obtained using underwater motion capture analysis. As a result, there were no differences in propulsive forces and mechanical power to overcome water resistance (PD) with or without hand paddles at the same swimming velocities. However, the use of hand paddles decreased stroke rate and hand velocities, so mechanical power to push the water at the hand (PK) decreased. Using hand paddles thus increased Froude efficiency (ηF). These results suggest that training load decreases when swimmers swim at the same velocities while using hand paddles. This insight could prove useful for coaches and swimmers when using hand paddles for training to help ensure that they are used in accordance with their intended training purpose. If swimmers use hand paddles increasing propulsive force or PK, they should swim at a higher swimming velocity with hand paddles than without.  相似文献   

4.
A Zr62Cu15.5Al10Ni12.5 bulk metallic glass with a large supercooled liquid region of 90 K, produced by copper-mould casting, exhibits a high strength of 1730 MPa and superior but highly inhomogeneous plasticity under uniaxial compression at ambient temperature. Micro-X-ray diffraction shows that compressive loading facilitates crystallization in the monolithic glassy alloy, resulting in room-temperature plasticity. The plastic deformation of the Zr62Cu15.5Al10Ni12.5 BMG may be attributed to in situ precipitation of nanocrystals during compression in heavily deformed areas.  相似文献   

5.
The authors investigate the ways in which varied postural responses to translating platform perturbations are associated with the variables of strength and power. Twenty-four physically active and 27 sedentary young adults were exposed to a set of postural perturbations at varied velocities (10 and 20 cm/s) and the respective accelerations (6.4 and 6.9 m/s2), constant distance (6 cm), and 4 directions of platform motion (forward, backward, left-lateral, and right-lateral). They also performed maximum voluntary isometric contraction (MVC) and chair rising/chair jumping tests. The analysis of variance revealed significant interaction effect for peak center of pressure displacement, direction by velocity: F3,129 = 24.43, p = .002; and direction by acceleration: F3,129 = 34.18, p = .001. There were no significant correlations between peak center of pressure displacements and peak force and peak rate of force development measured during MVC in either standing (r = .27–57) or sitting positions (r = .12–51) and peak power during chair jumping (r = .47–.59) in all participants. As such, only a small proportion of variance was explained (9–39%, 3–23%, and 23–41%, respectively). In conclusion, interaction effects indicate that the composition of stimuli strongly influences compensatory responses and this effect is more pronounced in sedentary than in physically active young adults. Nevertheless, the dynamic balance is not associated with muscle strength and power in either group.  相似文献   

6.
The differential method consists of the analysis of the variation of gait parameters length, frequency, and velocity with respect to their mean values, respectively, ΔL = LLm , Δf = ffm , and Δv = vvm , where Lm , fm , and vm represent the mean values of those parameters. Assuming that the strategy of modulation of velocity implies that L and f are functions of v and that statistical analyses of ratios ΔLv and Δfv have established that there is a very significant linear correlation, close to 1, between those ratios, the mathematical procedure allows one to determine the equation of step length, L = a · f + b · v + K, where a and b are the slope and the intercept of the linear regression and K is close to Lm . The equation was experimentally tested on 140 gait sequences performed by 6 participants and for gait velocities ranging from 0.6 to 2.2 m/s and was found to be very representative of all individual values. The differential method provides another way of using the derivative of velocity, v = L·f, to characterize the strategy of velocity modulation, which then permits one to determine the linear equation of velocity, v = f · Lm + L · fm Lm · fm , and to show that the respective parts played by each parameter in the progression velocity are approximately equal. The author establishes the uniqueness of the different linear adjustments and discusses the differential method's own modes of use, that is, interindividually or globally.  相似文献   

7.
A maximum likelihood approach is described for estimating the validity of a test (x) as a predictor of a criterion variable (y) when there are both missing and censoredy scores present in the data set. The missing data are due to selection on a latent variable (y s ) which may be conditionally related toy givenx. Thus, the missing data may not be missing random. The censoring process in due to the presence of a floor or ceiling effect. The maximum likelihood estimates are constructed using the EM algorithm. The entire analysis is demonstrated in terms of hypothetical data sets.  相似文献   

8.
Abstract

A quantitative model is proposed to explain the indentation size effect (ISE) often observed in the hardness response of hard brittle materials, namely that hardness is observed to increase with decreasing indentation size. The model is based on a mixed elastic/plastic materials deformation response whereby plastic deformation occurs in a discrete manner progressively to relieve stresses created by elastic flexure of the surface at the edges of the indentation. During unloading of the indenter, recovery of the elastic increment of deformation, which precedes each new band of plastic deformation, results in the indentation appearing smaller than expected, particularly as the indentation sizes decrease to approach the scale of the plastic deformation band spacing. The model fits observed experimental data well and analysis of hardness/size data in this way is shown to allow both a bulk hardness value and a characteristic deformation band scale to be calculated for a given sample.  相似文献   

9.
The τb and y statistics are interpreted as rank-monotonic coefficients of partial agreement. Using a method of transposition employed by Pearson's ri intraclass correlation coefficient, the τbi and yi intraclass coefficients of total monotonic agreement are created. Transpositional measures of agreement like τbi and τi measure the combined effects of cell and marginal disagreement which make them particularly suitable for reliability studies. The coefficients are also made applicable to K > 2 sets of ranks.  相似文献   

10.
Monotone regression: Continuity and differentiability properties   总被引:1,自引:0,他引:1  
Least-squares monotone regression has received considerable discussion and use. Consider the residual sum of squaresQ obtained from the least-squares monotone regression ofy i onx i . TreatingQ as a function of they i , we prove that the gradient Q exists and is continuous everywhere, and is given by a simple formula. (We also discuss the gradient ofd=Q 1/2.) These facts, which can be questioned (Louis Guttman, private communication), are important for the iterative numerical solution of models, such as some kinds of multidimensional scaling, in which monotone regression occurs as a subsidiary element, so that they i and hence indirectlyQ are functions of other variables.  相似文献   

11.
ABSTRACT

The tensile properties of TiNi43.5Fe6.5 alloy samples having different grain sizes (0.16, 0.35, 1.7, 2.3, and 3.9?μm) and fabricated by severe plastic deformation and annealing were investigated. It was observed that both the strength and the elongation of the alloy increase with a decrease in the grain size until the average size reaches 1.7?μm. However, for average grain sizes smaller than 1.7?μm, the elongation decreases continuously with further grain refinement. On the other hand, the strain-hardening rate does not decrease with the decrease in plasticity but instead increases slightly. The poor ductility of the ultrafine-grained TiNi43.5Fe6.5 alloy is accompanied by a high degree of strain hardening. This newly observed ductility behaviour of the ultrafine-grained TiNi43.5Fe6.5 alloy is elucidated by characterising the intragranular and grain boundaries.  相似文献   

12.
The basic properties of a dynamic systems approach of development are illustrated by contrasting two simple equations. One, yt+1 = f (yt), is characteristic of dynamic systems models. The other, yi = f (xi), refers to what, for the sake of simplicity, is referred to as the standard developmental approach. We give illustrations from cognitive, language and social development to show the characteristic differences of these two types of models and show their complementarity. The article further compares the “Bloomington” with the “Groningen” approach to dynamic systems theorizing in developmental psychology. It continues with a discussion of two important questions. One involves the issue of measurement and the nature of developmental variables from the viewpoint of dynamic systems. The second concerns the question of short- and long-term time scales in developmental models, which is discussed on the basis of an example, namely dyadic interaction of young children in the context of different social statuses.  相似文献   

13.
The crystal growth velocity of Ni95Si5 and Ni90Si10 alloys as a function of undercooling is investigated using molecular dynamics simulations. The modified imbedded atom method potential yields the equilibrium liquidus temperatures T L?≈?1505 and 1387?K for Ni95Si5 and Ni90Si10 alloys, respectively. From the liquidus temperatures down to the deeply undercooled region, the crystal growth velocities of both the alloys rise to the maximum with increasing undercooling and then drop slowly, whereas the athermal growth process presented in elemental Ni is not observed in Ni–Si alloys. Instead, the undercooling dependence of the growth velocity can be well-described by the diffusion-limited model, furthermore, the activation energy associated with the diffusion from melt to interface increases as the concentration increases from 5 to 10?at.% Si, resulting in the remarkable decrease of growth velocity.  相似文献   

14.
In two experiments, patterns of response error during a timing accuracy task were investigated. In Experiment 1. these patterns were examined across a full range of movement velocities, which provided a test of the hypothesis that as movement velocity increases, constant error (CE) shifts from a negative to a positive response bias, with the zero CE point occurring at approximately 50% of maximum movement velocity (Hancock & Newell, 1985). Additionally, by examining variable error (VE), timing error variability patterns over a full range of movement velocities were established. Subjects (N = 6) performed a series of forearm flexion movements requiring 19 different movement velocities. Results corroborated previous observations that variability of timing error primarily decreased as movement velocity increased from 6 to 42% of maximum velocity. Additionally, CE data across the velocity spectrum did not support the proposed timing error function. In Experiment 2, the effect(s) of responding at 3 movement distances with 6 movement velocities on response timing error were investigated. VE was significantly lower for the 3 high-velocity movements than for the 3 low-velocity movements. Additionally, when MT was mathematically factored out. VE was less at the long movement distance than at the short distance. As in Experiment 1, CE was unaffected by distance or velocity effects and the predicted CE timing error function was not evident.  相似文献   

15.
The study aims to test three hypotheses: (a) the rotation of the upper trunk consists of roll, pitch and yaw of frequencies harmonic to the stroke frequency of the front crawl stroke, (b) the rotation of the upper trunk generates back-and-forth movements of the shoulders, which enhances the movements of the stroking arms, and (c) the angular velocities of roll, pitch and yaw are associated with hand propulsion (HP). Front crawl strokes performed by twenty male swimmers were measured with a motion capture system. The roll, pitch and yaw angles about the three orthogonal axes embedded in the upper trunk were determined as three sequential Cardan angles and their angular velocities were determined as the three respective components of the angular velocity. HP and the drag and lift components of HP (HPD and HPL) were estimated by the hand positions and the data from twelve pressure sensors attached on hands. The roll, pitch, and yaw angles were altered in frequencies harmonic to the stroke frequency during the front crawl stroke. Shoulders alternately moved back and forth due to the upper trunk rotation. In the pull phase the angular velocity of roll was correlated with HPL (r = −0.62, p = 0.004). Based on the back-and-forth movements of the shoulders and roll motion relative to a hand movement, the arm-stroke technique of the front crawl swimming was discussed in terms of increasing the hand velocity and HP.  相似文献   

16.
Cast Cu50Zr50 alloy rods with a diameter of 1?mm have been found to consist of a glassy phase containing fine crystalline particles with a size of about 5?nm. They have a glass transition temperature T g of 675?K, and a large supercooled-liquid region extending 57?K above T g. The rods exhibit a high yield strength of 1860?MPa and a Young's modulus of 104?GPa. Because they contain a dispersion of embedded nanocrystals, the as-cast bulk metallic glass rods can sustain a compressive plastic strain at room temperature of more than 50%, an exceptional value which is explicable by compensation of any shear softening by nanocrystal coalescence and pinning of shear bands.  相似文献   

17.
18.
Cast Co–5.6 wt% Cu and Co–13.6 wt% Cu alloys were subjected to severe plastic deformation (SPD) by high-pressure torsion (HPT). The HPT treatment drastically decreases the size of the Co grains (from 20 µm to 100 nm) and the Cu precipitates (from 2 µm to 10 nm). As a result, the coercivity H c of both the alloys radically increases. The saturation magnetization, M s, remains almost unchanged. Thus, SPD of the bulk samples opens the way for drastic increase in the coercivity for the Co-based alloys.  相似文献   

19.
Variability in local dynamic plasticity due to material anisotropy in polycrystalline metals is likely to be important on damage nucleation and growth at low pressures. Hydrodynamic instabilities could be used to study these plasticity effects by correlating measured changes in perturbation amplitudes at free surfaces to local plastic behaviour and grain orientation, but amplitude changes are typically too small to be measured reliably at low pressures using conventional diagnostics. Correlations between strength at low shock pressures and grain orientation were studied in copper (grain size?≈?800 μm) using the Richtmyer–Meshkov instability with a square-wave surface perturbation (wavelength = 150 μm, amplitude = 5 μm), shocked at 2.7 GPa using symmetric plate impacts. A Plexiglas window was pressed against the peaks of the perturbation, keeping valleys as free surfaces. This produced perturbation amplitude changes much larger than those predicted without the window. Amplitude reductions from 64 to 88% were measured in recovered samples and grains oriented close to 〈0 0 1〉 parallel to the shock had the largest final amplitude, whereas grains with shocks directions close to 〈1 0 1〉 had the lowest. Finite element simulations were performed with elastic-perfectly plastic models to estimate yield strengths leading lead to those final amplitudes. Anisotropic elasticity and these yield strengths were used to calculate the resolved shear stresses at yielding for the two orientations. Results are compared with reports on orientation dependence of dynamic yielding in Cu single crystals and the higher values obtained suggest that strength estimations via hydrodynamic instabilities are sensitive to strain hardening and strain rate effects.  相似文献   

20.
The authors evaluated the effect of 3 months of resistance and aerobic training (3 sessions/week) on body balance in a group of 25 overweight and obese individuals. Prior to and after the training, they performed static and task-oriented balance tests under various conditions. Mean center of pressure (CoP) velocity and mean trace length of the CoP in the y-axis registered during a one-legged stance significantly decreased after the resistance training (19.1%, p = .024; 29.3%, p = .009). Mean trace length of the CoP in the y-axis decreased significantly also during a bipedal stance on a foam surface with eyes open and closed (10.9%, p = .040; 18.2%, p = .027). In addition, mean CoP distance and mean squared CoP distance in the anteroposterior direction during a visually guided center of mass (CoM) tracking task significantly improved (14.7%, p = .033; 28.2%, p = .016). However, only mean trace length of the CoP in the y-axis during a bipedal stance on a foam surface with eyes open and closed significantly decreased after the aerobic training (10.3%, p = .047; 16.5%, p = .029). It may be concluded that resistance training is more efficient for the improvement of the anteroposterior unilateral stability and the accuracy of the regulation of the CoM anteroposterior position than aerobic training in overweight and obese individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号