首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The perirhinal cortex (PRh) has been strongly implicated in object recognition memory and visual stimulus representation. Studies of object recognition have revealed evidence for the involvement of several neurotransmitter subsystems, including those involving NMDA (N-methyl-d-aspartic acid) and muscarinic cholinergic receptors. In the present study, we assessed the possible involvement of PRh and related receptor subsystems in two-choice visual discrimination learning by Lister Hooded rats tested in touchscreen-equipped operant boxes. In Experiment 1, daily pre-training inactivation of PRh with the GABAA receptor agonist muscimol (0.5 μg/hemisphere) significantly impaired acquisition of the two-choice visual discrimination. In Experiment 2, daily pre-training blockade of either NMDA or muscarinic receptors in PRh with AP5 (5.9 μg/hemisphere) or scopolamine (10 μg/hemisphere), respectively, impaired task acquisition. These results parallel the findings from object recognition studies and suggest a generality of neurotransmitter receptor involvement underlying the role of PRh in both object recognition memory and visual discrimination learning. The involvement of PRh in both types of tasks may be related to its role in complex visual stimulus representation.  相似文献   

2.
The influence of task difficulty on aberrant behavior was investigated with three severely handicapped students. Noticeably higher rates of problem behavior occurred in demand compared to no-demand conditions. In addition, there were higher rates of problem behaviors on difficult versus easy tasks. Both these findings were validated with visual discrimination and perceptual motor tasks. An errorless learning procedure effectively minimized errors and aberrant behavior in visual discrimination tasks but not in perceptual motor tasks. It was conceptualized that aberrant behavior was maintained by negative reinforcement contingencies. Difficult tasks were aversive to the children, who emitted aberrant responses to escape or avoid such tasks. By contrast, conditions in which no demands were made, easy tasks, and, in visual discrimination learning, errorless tasks, were less aversive and resulted in little or no problem behavior. Implications for reducing maladaptive behaviors through curricular modifications are discussed and contrasted to more traditional consequence manipulation approaches.  相似文献   

3.
We studied the role of sensorimotor and working memory systems in supporting development of perceptual rhythm processing with 119 participants aged 7–12 years. Children were assessed for their abilities in sensorimotor synchronization (SMS; beat tapping), auditory working memory (AWM; digit span), and rhythm discrimination (RD; same/different judgment on a pair of musical rhythm sequences). Multiple regression analysis revealed that children's RD performance was independently predicted by higher beat tapping consistency and greater digit span score, with all other demographic variables (age, sex, socioeconomic status, music training) controlled. The association between RD and SMS was more robust in the slower tempos (60 and 100 beats-per-minute (BPM)) than faster ones (120 and 180 BPM). Critically, the relation of SMS to RD was moderated by age in that RD performance was predicted by beat tapping consistency in younger children (age: 7–9 years), but not in older children (age: 10–12 years). AWM was the only predictor of RD in older children. Together, the current findings demonstrate that the sensorimotor and working memory systems jointly support RD processing during middle-to-late childhood and that the degree of association between the two systems and perceptual rhythm processing is shifted before entering into early adolescence.  相似文献   

4.
To compare the timing of perceptual and motor decisions, distinct tasks have been designed, all of which have yielded systematic differences between these two moments. These observations have been taken as evidence of a sensorimotor dissociation. Inasmuch as the distinction between perceptual and motor decision moments is conceptually warranted, this conclusion remains debatable, since the observed differences may reflect the dissimilarity between the stimulations/tasks used to assess them. Here, we minimize such dissimilarities by comparing response time (RT) and anticipatory RT (ART), an alternative technique with which to infer the relative perceptual decision moments. Observers pressed a key either in synchrony with the third of a sequence of three stimuli appearing at a constant pace (ART) or in response to the onset of this third stimulus presented at a random interval after the second (RT). Hence, the two stimulation sequences were virtually identical. Both the mean and the variance of RT were affected by stimulus intensity about 1.5 times more than were the mean and the variance of ART. Within the framework of two simple integration-to-bound models, these findings are compatible with the hypothesis that perceptual and motor decisions operate on the same internal signal but are based on distinct criteria, with the perceptual criterion lower than the motor one.  相似文献   

5.
There are cells in our motor cortex that fire both when we perform and when we observe similar actions. It has been suggested that these perceptual‐motor couplings in the brain develop through associative learning during correlated sensorimotor experience. Although studies with adult participants have provided support for this hypothesis, there is no direct evidence that associative learning also underlies the initial formation of perceptual–motor couplings in the developing brain. With the present study we addressed this question by manipulating infants’ opportunities to associate the visual and motor representation of a novel action, and by investigating how this influenced their sensorimotor cortex activation when they observed this action performed by others. Pre‐walking 7–9‐month‐old infants performed stepping movements on an infant treadmill while they either observed their own real‐time leg movements (Contingent group) or the previously recorded leg movements of another infant (Non‐contingent control group). Infants in a second control group did not perform any steps and only received visual experience with the stepping actions. Before and after the training period we measured infants’ sensorimotor alpha suppression, as an index of sensorimotor cortex activation, while they watched videos of other infants’ stepping actions. While we did not find greater sensorimotor alpha suppression following training in the Contingent group as a whole, we nevertheless found that the strength of the visuomotor contingency experienced during training predicted the amount of sensorimotor alpha suppression at post‐test in this group. We did not find any effects of motor experience alone. These results suggest that the development of perceptual–motor couplings in the infant brain is likely to be supported by associative learning during correlated visuomotor experience.  相似文献   

6.
Across a series of four experiments with 3‐ to 4‐year‐olds we demonstrate how cognitive mechanisms supporting noun learning extend to the mapping of actions to objects. In Experiment 1 (n = 61) the demonstration of a novel action led children to select a novel, rather than a familiar object. In Experiment 2 (n = 78) children exhibited long‐term retention of novel action‐object mappings and extended these actions to other category members. In Experiment 3 (n = 60) we showed that children formed an accurate sensorimotor record of the novel action. In Experiment 4 (n = 54) we demonstrate limits on the types of actions mapped to novel objects. Overall these data suggest that certain aspects of noun mapping share common processing with action mapping and support a domain‐general account of word learning.  相似文献   

7.
The present study investigated the learning of a culturally unfamiliar musical rhythm, leading to the development of temporal expectations, and it explored the potential for generalization across tempi and tasks. With that aim, we adapted the serial reaction time task to examine the learning of temporal structures by an indirect method. The temporal pattern employed was based on a complex interval ratio (2:3) and compared to one based on a simple interval ratio (1:2). In the exposure phase, non-musician participants performed a two-choice speeded discrimination task that required responding by key press to each event of the simple or complex auditory pattern. Participants were not informed about the temporal regularities; their task solely concerned the discrimination task. During exposure (Experiments 1–3), response times decreased over time for both temporal patterns, but particularly for the events following the longer interval of the more complex 2:3 pattern. Exposure further influenced performance in subsequent testing phases, notably the precision of tap timing in a production task (Experiment 2) and temporal expectations in a perception task (Experiment 3). Our findings promote the new paradigm introduced here as a method to investigate the learning of temporal structures.  相似文献   

8.
The control of rhythmic action sequences may involve two distinct timing strategies, i.e., event-based and emergent timing, which are usually revealed through finger-tapping and circle-drawing tasks, respectively. There is a lively debate concerning the possibility of coexistence of the two modes of timing for the execution of a single task. If one considers emergent timing as simply an absence of explicit representation of a time interval, then by definition, the two modes of timing cannot coexist. However, if one considers that emergent timing engages control of another motor parameter, e.g., a control of movement through space rather than time, then the possibility of coexistence needs to be reassessed. In the present study, we designed a hybrid of finger-tapping and circle-drawing tasks for which the demands for space and time control were present at the same time in order to reassess the coexistence hypothesis. Seventy-eight participants performed a spatial-tapping task in which finger taps were to be produced in synchrony with a regular metronome to 6 visual targets presented around a virtual circle. The metronome set ten distinct tempi (1100–300 ms). Using autocorrelation analyses on timing variables, we show that motor timing was event-based at slow tempi and emergent at faster tempi. Through an analysis of the trajectory, we confirm that an increase in the spatial control of movement took place congruently with a switch from event-based to emergent timing modes. At these fast tempi, timing and spatial errors were correlated but only at the specific target location for which a dynamical anchor point was revealed. Hence, we conclude that the coding of emergent timing has a spatial nature from which emerge timing regularities. This spatio-temporal strategy insures the performance of sequential motor actions when cognitive effort is too high for the use of pure event-based timing strategies.  相似文献   

9.
The effect of preexposure on human perceptual learning was investigated in four experiments. In Experiments 1a and 1b, participants were preexposed to one pair of visual stimuli on an intermixed schedule (AX/BX) and one on a blocked schedule (CX_DX). The ability to discriminate between AX and BX and between CX and DX was then assessed by examining the extent to which key presses assigned to each member of a stimulus pair generalized to the other member (Experiment 1a) and by looking at the accuracy of same-different responses (Experiment 1b). Stimuli were more easily discriminated following intermixed than following blocked preexposure on both the generalization and same-different tasks. This suggests that two stimuli are more perceptually distinct after intermixed preexposure. Experiments 2a and 2b investigated the mechanisms responsible for perceptual learning using same-different tasks. The results support the suggestion that the enhanced discrimination observed after intermixed preexposure is due to increases in the salience of the unique elements.  相似文献   

10.
Performance on perceptual tasks improves with practice. Most theories address only accuracy data and tacitly assume that perceptual learning is a monolithic phenomenon. The present study pioneers the use of response time distributions in perceptual learning research. The 27 observers practiced a visual motion-direction discrimination task with filtered-noise textures for four sessions with feedback. Session 5 tested whether the learning effects transferred to the orthogonal direction. The diffusion model (Ratcliff, Psychological Review, 85, 59–108, 1978) achieved good fits to the individual response time distributions from each session and identified two distinct learning mechanisms with markedly different specificities. A stimulus-specific increase in the drift-rate parameter indicated improved sensory input to the decision process, and a stimulus-general decrease in nondecision time variability suggested improved timing of the decision process onset relative to stimulus onset (which was preceded by a beep). A traditional d’ analysis would miss the latter effect, but the diffusion-model analysis identified it in the response time data.  相似文献   

11.
 It is sometimes assumed that limits of temporal discrimination established in psychophysical tasks constrain the timing information available for the control of action. Results from the five perceptual-motor synchronization experiments presented here argue against this assumption. Experiment 1 demonstrates that subliminal (0.8–2%) local changes in interval duration in an otherwise isochronous auditory sequence are rapidly compensated for in the timing of synchronized finger tapping. If this compensation is based on perception of the highly variable synchronization error (SE) rather than of the local change in stimulus period, then it could be based solely on SEs that exceed the temporal order threshold. However, that hypothesis is ruled out by additional analyses of Exp. 1 and the results of Exp. 2, a combined synchronization and temporal order judgment task. Experiments 3–5 further show that three factors that affect the detectability of local deviations from stimulus isochrony do not inhibit effective compensation for such deviations in synchronized tapping. Experiment 5, a combined synchronization and detection task, shows directly that compensation for timing perturbations does not depend on explicit detection. Overall, the results suggest that the automatic processes involved in the temporal control of action have access to more accurate timing information than do the conscious decision processes of auditory temporal judgment. Received: 19 November 1998 / Accepted: 18 March 1999  相似文献   

12.
Although temporal processing is used in a wide range of sensory and motor tasks, there is little evidence as to whether a single centralized clock or a distributed system underlies timing in the range of tens to hundreds of milliseconds. We investigated this question by studying whether learning on an auditory interval discrimination task generalizes across stimulus types, intervals, and frequencies. The degree to which improvements in timing carry over to different stimulus features constrains the neural mechanisms underlying timing. Human subjects trained on a 100- or 200-msec interval discrimination task showed an improvement in temporal resolution. This learning generalized to a perceptually distinct duration stimulus, as well as to the trained interval presented with tones at untrained spectral frequencies. The improvement in performance did not generalize to untrained intervals. To determine if spectral generalization was dependent on the importance of frequency information in the task, subjects were simultaneously trained on two different intervals identified by frequency. As a whole, our results indicate that the brain uses circuits that are dedicated to specific time spans, and that each circuit processes stimuli across nontemporal stimulus features. The patterns of generalization additionally indicate that temporal learning does not rely on changes in early, subcortical processing, because the nontemporal features are encoded by different channels at early stages.  相似文献   

13.
Perceptual learning refers to the phenomenon that practice or training in perceptual tasks often substantially improves perceptual performance. Often exhibiting stimulus or task specificities, perceptual learning differs from learning in the cognitive or motor domains. Research on perceptual learning reveals important plasticity in adult perceptual systems, and as well as the limitations in the information processing of the human observer. In this article, we review the behavioral results, mechanisms, physiological basis, computational models, and applications of visual perceptual learning.  相似文献   

14.
The effect of preexposure on human perceptual learning was investigated in four experiments. In Experiments 1a and 1b, participants were preexposed to one pair of visual stimuli on an intermixed schedule (AX/BX) and one on a blocked schedule (CX_DX). The ability to discriminate between AX and BX and between CX and DX was then assessed by examining the extent to which key presses assigned to each member of a stimulus pair generalized to the other member (Experiment 1a) and by looking at the accuracy of same–different responses (Experiment 1b). Stimuli were more easily discriminated following intermixed than following blocked preexposure on both the generalization and same–different tasks. This suggests that two stimuli are more perceptually distinct after intermixed preexposure. Experiments 2a and 2b investigated the mechanisms responsible for perceptual learning using same–different tasks. The results support the suggestion that the enhanced discrimination observed after intermixed preexposure is due to increases in the salience of the unique elements.  相似文献   

15.
The present study reviews the literature on the empirical evidence for the dissociation between perception and action. We first review several key studies on brain-damaged patients, such as those suffering from blindsight and visual/tactile agnosia, and on experimental findings examining pointing movements in normal people in response to a nonconsciously perceived stimulus. We then describe three experiments we conducted using simple reaction time (RT) tasks with backward masking, in which the first (weak) and second (strong) electric stimuli were consecutively presented with a 40-ms interstimulus interval (ISI). First, we compared simple RTs for three stimulus conditions: weak alone, strong alone, and double, i.e., weak plus strong (Experiment 1); then, we manipulated the intensity of the first stimulus from the threshold (T) to 1.2T and 2T, with the second stimulus at 4T (Experiment 2); finally, we tested three different ISIs (20, 40, and 60 ms) with the stimulus intensities at 1.2T and 4T for the first and second stimuli (Experiment 3). These experiments showed that simple RTs were shorter for the double condition than for the strong-alone condition, indicating that motor processes under the double condition may be triggered by sensory inputs arising from the first stimulus. Our results also showed that the first stimulus was perceived without conscious awareness. These findings suggested that motor processes may be dissociated from conscious perceptual processes and that these two processes may not take place in a series but, rather, in parallel. We discussed the likely mechanisms underlying nonconscious perception and motor response to a nonconsciously perceived stimulus.  相似文献   

16.
Perceptual learning of motion discrimination has long been believed to be motion direction specific. However, recent studies using a double-training paradigm, in which the to-be-transferred condition was experienced through practicing an irrelevant task, found that perceptual learning in various visual tasks, including motion direction discrimination, can transfer completely to new conditions. This transfer occurred when the transfer stimulus was subconsciously presented, or when top-down attention was allocated to the transfer stimulus (which was absent). In the current study, observers were exposed subconsciously, or directed top-down attention, to the transfer motion direction, either simultaneously or successively with training. Data showed that motion direction learning transferred to the transfer direction, and suggest that motion direction learning specificity may result from under-activations of untrained visual neurons due to insufficient bottom-up stimulation and/or lack of top-down attention during training. These results shed new light on the neural mechanisms underlying motion perceptual learning and provide a constraint for models of motion perceptual learning.  相似文献   

17.
Aging is known to lead to decrements in sensory and cognitive functioning and motor performance. The purpose of the present experiment was twofold: a) We assessed the influence of wearing an age simulation suit on motor sequence learning, cognitive speed tasks and far visual acuity in healthy, younger adults. b) We evaluated the interaction of cognitive aging and declining motor sequence learning in older adults. In a between-subjects design we tested 11 younger adults (Mage = 23.6 years) without the age suit, 12 younger adults wearing the age suit (Mage = 23.2 years), and 23 older adults (Mage = 72.6 years). All participants learned a simple, spatial-temporal movement sequence on two consecutive days, and we assessed perceptual processing speed (Digit Symbol Substitution test and Figural Speed test) and far visual acuity. Wearing an age simulation suit neither affected the learning of the simple motor sequence nor the performance at the cognitive speed tasks in younger adults. However, far visual acuity suffered from wearing the suit. Younger adults with and without the suit showed better motor sequence learning compared to older adults. The significant correlations between the cognitive speed tests and the motor learning performance in older adults indicated that cognitive aging partially explains some of the variance in age-related motor learning deficits.  相似文献   

18.
Common coding theory states that perception and action may reciprocally induce each other. Consequently, motor expertise should map onto perceptual consistency in specific tasks such as predicting the exact timing of a musical entry. To test this hypothesis, ten string musicians (motor experts), ten non-string musicians (visual experts), and ten non-musicians were asked to watch progressively occluded video recordings of a first violinist indicating entries to fellow members of a string quartet. Participants synchronised with the perceived timing of the musical entries. Results revealed significant effects of motor expertise on perception. Compared to visual experts and non-musicians, string players not only responded more accurately, but also with less timing variability. These findings provide evidence that motor experts’ consistency in movement execution—a key characteristic of expert motor performance—is mirrored in lower variability in perceptual judgements, indicating close links between action competence and perception.  相似文献   

19.
Many reports have indicated that implicit learning of sequences in a choice response time task is primarily perceptual; subjects learn the sequence of stimuli rather than the sequence of motor responses. Three experiments tested whether implicit motor sequence learning could be purely perceptual: no support was found for that hypothesis. Subjects who merely watched stimuli did not learn the sequence implicitly (Experiment 1), and sequence learning transferred robustly to a different set of stimulus cues (Experiment 2). In the final experiment, the stimulus-response mapping was changed at transfer so that one group of subjects pushed the same sequence of keys but saw new stimuli, whereas another group pushed a different sequence of keys but saw the same stimuli. Transfer to the new mapping was shown only if the motor sequence was kept constant, not the perceptual sequence. It is proposed that subjects learn a sequence of response locations in this and similar tasks.  相似文献   

20.
《Acta psychologica》2013,142(2):238-244
Here we present two experiments investigating the implicit orienting of attention over time by entrainment to an auditory rhythmic stimulus. In the first experiment, participants carried out a detection and discrimination tasks with auditory and visual targets while listening to an isochronous, auditory sequence, which acted as the entraining stimulus. For the second experiment, we used musical extracts as entraining stimulus, and tested the resulting strength of entrainment with a visual discrimination task. Both experiments used reaction times as a dependent variable. By manipulating the appearance of targets across four selected metrical positions of the auditory entraining stimulus we were able to observe how entraining to a rhythm modulates behavioural responses. That our results were independent of modality gives a new insight into cross-modal interactions between auditory and visual modalities in the context of dynamic attending to auditory temporal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号