首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sleep spindle activity in infants supports their formation of generalized memories during sleep, indicating that specific sleep processes affect the consolidation of memories early in life. Characteristics of sleep spindles depend on the infant's developmental state and are known to be associated with trait‐like factors such as intelligence. It is, however, largely unknown which state‐like factors affect sleep spindles in infancy. By varying infants’ wake experience in a within‐subject design, here we provide evidence for a learning‐ and memory‐dependent modulation of infant spindle activity. In a lexical‐semantic learning session before a nap, 14‐ to 16‐month‐old infants were exposed to unknown words as labels for exemplars of unknown object categories. In a memory test on the next day, generalization to novel category exemplars was tested. In a nonlearning control session preceding a nap on another day, the same infants heard known words as labels for exemplars of already known categories. Central–parietal fast sleep spindles increased after the encoding of unknown object–word pairings compared to known pairings, evidencing that an infant's spindle activity varies depending on its prior knowledge for newly encoded information. Correlations suggest that enhanced spindle activity was particularly triggered, when similar unknown pairings were not generalized immediately during encoding. The spindle increase triggered by previously not generalized object–word pairings, moreover, boosted the formation of generalized memories for these pairings. Overall, the results provide first evidence for a fine‐tuned regulation of infant sleep quality according to current consolidation requirements, which improves the infant long‐term memory for new experiences.  相似文献   

2.
Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention over an interval containing a nap and determined spindle density for light and deep sleep separately. In deep sleep, spindle density was considerably higher and showed a strong and robust positive correlation with retention. This relation was absent for light sleep, suggesting that the potentiating effects of spindles are tied to their co-occurrence with slow oscillations.  相似文献   

3.
A broad range of studies demonstrate that sleep has a facilitating role in memory consolidation (see Rasch & Born, 2013 ). Whether sleep‐dependent memory consolidation is also apparent in infants in their first few months of life has not been investigated. We demonstrate that 3‐month‐old infants only remember a cartoon face approximately 1.5–2 hours after its first presentation when a period of sleep followed learning. Furthermore, habituation time, that is, the time to become bored with a stimulus shown repetitively, correlated negatively with the density of infant sleep spindles, implying that processing speed is linked to specific electroencephalographic components of sleep. Our findings show that without a short period of sleep infants have problems remembering a newly seen face, that sleep enhances memory consolidation from a very early age, highlighting the importance of napping in infancy, and that infant sleep spindles may be associated with some aspects of cognitive ability.  相似文献   

4.
Although the acquisition of a novel word is apparently rapid, adult research suggests that integration of novel and existing knowledge (measured by engagement in lexical competition) requires sleep‐associated consolidation. We present the first investigation of whether a similar time‐course dissociation characterizes word learning across development. Consistent with previous research but counter to adults, 7–12‐year‐olds showed sleep‐associated consolidation effects in declarative but not procedural memory. Nevertheless, the relationship between sleep and word learning in children was remarkably similar to the pattern for adults. Following exposure to nonword competitors (e.g. biscal) in the a.m. or p.m., children’s ability to recognize and recall the nonwords improved only after sleep (after approximately 12‐hrs for the p.m. group and 24‐hrs for the a.m. group), with performance stable 1 week later. Novel nonwords only induced lexical competition effects after sleep. These findings suggest that children utilize a dual memory system when acquiring and integrating new vocabulary and highlight sleep as integral to this process. A video abstract of this article can be viewed at http://www.youtube.com/watch?v=8mm8SDUXw_0&feature=plcp .  相似文献   

5.
Infants, children and adults are capable of extracting recurring patterns from their environment through statistical learning (SL), an implicit learning mechanism that is considered to have an important role in language acquisition. Research over the past 20 years has shown that SL is present from very early infancy and found in a variety of tasks and across modalities (e.g., auditory, visual), raising questions on the domain generality of SL. However, while SL is well established for infants and adults, only little is known about its developmental trajectory during childhood, leaving two important questions unanswered: (1) Is SL an early‐maturing capacity that is fully developed in infancy, or does it improve with age like other cognitive capacities (e.g., memory)? and (2) Will SL have similar developmental trajectories across modalities? Only few studies have looked at SL across development, with conflicting results: some find age‐related improvements while others do not. Importantly, no study to date has examined auditory SL across childhood, nor compared it to visual SL to see if there are modality‐based differences in the developmental trajectory of SL abilities. We addressed these issues by conducting a large‐scale study of children's performance on matching auditory and visual SL tasks across a wide age range (5–12y). Results show modality‐based differences in the development of SL abilities: while children's learning in the visual domain improved with age, learning in the auditory domain did not change in the tested age range. We examine these findings in light of previous studies and discuss their implications for modality‐based differences in SL and for the role of auditory SL in language acquisition. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=3kg35hoF0pw .  相似文献   

6.
适当的午睡可以缓解我们午后的疲劳感,提高午后心境状态、觉醒状态;对于进行了正常夜眠的个体而言,习惯性午睡行为并不是对夜眠不足的补偿;短时午睡对恢复正常体个体身心状态有着积极的效果;然而,越来越多的研究也发现,午睡对记忆也有一定的整合作用。午睡中慢波睡眠对陈述性记忆的整合起着重要作用,此外,二期睡眠纺锤波对陈述性记忆及程序性记忆的整合也起着一定的作用。利用午睡探讨睡眠对记忆的整合作用及机制,可能是未来研究的方向  相似文献   

7.
When an episode of emotional significance is encountered, it often results in the formation of a highly resistant memory representation that is easily retrieved for many succeeding years. Recent research shows that beyond generic consolidation processes, rapid eye movement (REM) sleep importantly contributes to this effect. However, the boundary conditions of consolidation processes during REM sleep, specifically whether these extend to source memory, have not been examined extensively. The current study tested the effects of putative consolidation processes emerging during REM sleep and slow wave sleep (SWS) on item and source memory of negative and neutral images, respectively. Results demonstrate superior emotional relative to neutral item memory retention after both late night REM sleep and early night SWS. Emotional source memory, on the other hand, exhibited an attenuated decline following late night REM sleep, whereas neutral source memory was selectively preserved across early night SWS. This pattern of results suggests a selective preservation of emotional source memory during REM sleep that is functionally dissociable from SWS-dependent reprocessing of neutral source memory. This was further substantiated by a neurophysiological dissociation: Postsleep emotional source memory was selectively correlated with frontal theta lateralization (REM sleep), whereas postsleep neutral item memory was correlated with SWS spindle power. As such, the present results contribute to a more comprehensive characterization of sleep-related consolidation mechanisms underlying emotional and neutral memory retention. Subsidiary analysis of emotional reactivity to previously encoded material revealed an enhancing rather than attenuating effect of late night REM sleep on emotional responses.  相似文献   

8.
Very few studies have examined the cognitive advantages of bilingualism during the first two years of development, and a majority of the studies examining bilingualism throughout the lifespan have focused on the relationship between multiple languages and cognitive control. Early experience with multiple language systems may influence domain‐general processes, such as memory, that may increase a bilingual child’s capacity for learning. In the current study, we found that bilingual, but not monolingual, infants were able to generalize across cues at 18 months. This is the first study to show a clear bilingual advantage in memory generalization, with more equal or balanced exposure to each language significantly predicting ability to generalize. A video abstract of this article can be viewed at http://www.youtube.com/watch?v=31QsMqYtGGo&feature=plcp  相似文献   

9.
According to the active system consolidation theory, memory consolidation during sleep relies on the reactivation of newly encoded memory representations. This reactivation is orchestrated by the interplay of sleep slow oscillations, spindles, and theta, which are in turn modulated by certain neurotransmitters like GABA to enable long-lasting plastic changes in the memory store. Here we asked whether the GABAergic system and associated changes in sleep oscillations are functionally related to memory reactivation during sleep. We administered the GABAA agonist zolpidem (10 mg) in a double-blind placebo-controlled study. To specifically focus on the effects on memory reactivation during sleep, we experimentally induced such reactivations by targeted memory reactivation (TMR) with learning-associated reminder cues presented during post-learning slow-wave sleep (SWS). Zolpidem significantly enhanced memory performance with TMR during sleep compared with placebo. Zolpidem also increased the coupling of fast spindles and theta to slow oscillations, although overall the power of slow spindles and theta was reduced compared with placebo. In an uncorrected exploratory analysis, memory performance was associated with slow spindle responses to TMR in the zolpidem condition, whereas it was associated with fast spindle responses in placebo. These findings provide tentative first evidence that GABAergic activity may be functionally implicated in memory reactivation processes during sleep, possibly via its effects on slow oscillations, spindles and theta as well as their interplay.

Sleep supports the consolidation of newly acquired memories (Mednick et al. 2011; Klinzing et al. 2019). According to the active system consolidation theory, new memories and their associated neuronal activation patterns become spontaneously reactivated (replayed) following learning in the sleeping brain (Wilson and McNaughton 1994; Diekelmann and Born 2010). These reactivations allow for the redistribution and integration of the memory representations from hippocampal to neocortical sites for long-term storage (Rasch and Born 2007; Klinzing et al. 2019). Memory reactivation during sleep has been proposed to rely on the synchronized interplay of electrophysiological oscillations characteristic of non–rapid eye movement (NREM) sleep, mainly neocortical slow oscillations (SOs, <1 Hz), thalamocortical spindles (9–15 Hz), and hippocampal ripples (80–200 Hz) (Mölle et al. 2009; Staresina et al. 2015; Helfrich et al. 2018; Ngo et al. 2020). Particularly, sleep spindles and their intricate phase coupling to SO have been suggested to be mechanistically involved in memory consolidation processes during sleep (Ulrich 2016; Antony et al. 2019). It has been proposed that memories become reinstated by spindle events, specifically during the up-state of slow oscillations, allowing for the flow of information between different brain sites as well as the induction of lasting structural and functional plastic changes in the learning-associated neuronal networks (Rosanova and Ulrich 2005; Peyrache and Seibt 2020). In addition to sleep spindles, neocortical and hippocampal theta activity (4–8 Hz) is also phase-locked to SO during NREM sleep (Gonzalez et al. 2018; Cox et al. 2019; Krugliakova et al. 2020), and this coupling has been related to memory consolidation during sleep (Schreiner et al. 2018).A number of neuromodulators seem to be involved in the generation of sleep spindles, SO and associated memory processing, most notably GABA (γ-aminobutyric acid), which is the major inhibitory neurotransmitter (Lancel 1999; Ulrich et al. 2018). Sleep spindles and sleep-dependent memory processing can be boosted by targeting the GABAergic system pharmacologically (Mednick et al. 2013). Zolpidem is one of the most frequently used drugs in this regard, binding to GABAA receptors at the same location as benzodiazepines, thereby acting as a GABAA receptor agonist (Lemmer 2007). Zolpidem increases the time spent in slow-wave sleep (SWS) and reduces the amount of rapid eye movement (REM) sleep (Kanno et al. 2000; Uchimura et al. 2006; Zhang et al. 2020). Zolpidem also increases the density and power of sleep spindles (Dijk et al. 2010; Lundahl et al. 2012; Mednick et al. 2013; Niknazar et al. 2015; Zhang et al. 2020) as well as the coupling of spindles to SO (Niknazar et al. 2015; Zhang et al. 2020), and it was further found to enhance declarative memory consolidation during sleep, with postsleep performance improvements being associated with higher spindle density and spindle power as well as with SO–spindle coupling (Kaestner et al. 2013; Mednick et al. 2013; Zhang et al. 2020).However, it remains unclear whether the changes in sleep stages, sleep spindles, and SO–spindle coupling after pharmacological manipulation with zolpidem are functionally related to the mechanisms underlying sleep-dependent memory consolidation such as memory reactivation. Over the last few years, targeted memory reactivation (TMR) has been increasingly applied to manipulate memory reactivation during sleep experimentally by presenting learning-associated reminder cues like odors or sounds (Oudiette and Paller 2013; Hu et al. 2020; Klinzing and Diekelmann 2020). TMR biases sleep-related neuronal replay events toward the reactivated memory contents (Lewis and Bendor 2019) and enhances subsequent recall performance (Rudoy et al. 2009; Diekelmann et al. 2011; Schreiner et al. 2015; Cairney et al. 2018). Although a few studies observed modulations of SOs (Rihm et al. 2014), sleep spindles (Cox et al. 2014), and SO–spindle coupling (Bar et al. 2020) with TMR during sleep, studies on the role of specific neurotransmitters and particularly on the role of GABAergic neurotransmission and associated changes in sleep oscillations for targeted memory reactivation are entirely lacking. One previous study tested the effect of pharmacologically increased GABAergic activity by administering the benzodiazepine clonazepam after cued reactivation of a declarative memory during wakefulness (Rodríguez et al. 2013). Clonazepam increased memory performance when it was administered after reactivation with an incomplete reminder cue, suggesting that increasing GABAergic neurotransmission may enhance the restabilization of reactivated declarative memories in humans during wakefulness.In the present study, we tested the effect of modulating GABAergic activity with zolpidem on targeted memory reactivation during sleep and associated changes in sleep spindles as well as SO–spindle and SO–theta coupling. We hypothesized that zolpidem enhances the beneficial effects of targeted memory reactivation on memory performance and that this enhancement is associated with increases in spindle density, spindle power, SO–spindle coupling, and possibly SO–theta coupling, and the amount of SWS. Participants were trained on a memory task including 30 sound–word associations in the evening (Forcato et al. 2020) and received an oral dose of 10 mg zolpidem (n = 11) or placebo (n = 11) after training before a full night of sleep in the sleep lab (Fig. 1). During the night, incomplete reminder cues (sounds + first syllable of the associated words) were played again via in-ear headphones during SWS. The next morning, participants were trained on an interference memory task to probe the stability of the original memory, which was tested 30 min later.Open in a separate windowFigure 1.Experimental design and memory task. (A) All subjects took part in a training session at ∼22.30, were administered with placebo (n = 11) or 10 mg of zolpidem (n = 11) before going to bed at 23:00, and received targeted memory reactivation during the first SWS period. After ∼8 h of sleep, in the morning, subjects learned an interference task and were tested on the original memory task in a testing session 30 min after the interference task. (B) Training: First, subjects were presented with 30 sound–word associations for learning. For each association, the sound was presented first for 2900 msec. The sound then continued accompanied by the word written on the screen and spoken aloud for 1500 msec. After a 4000-msec break, the next association was presented in the same way. After all associations were presented once, participants completed an immediate cued recall test. For each association, the sound was presented for 2900 msec. The sound then continued accompanied by the first syllable of the associated word for 1500 msec. Participants were then given 5000 msec to say the complete word aloud (sound continued during the entire period). Independently of their response, the correct answer was then presented on the screen and via headphones for 1500 msec. Reactivation: Each sound was first presented alone for an average of 2900 msec; the sound then continued accompanied by the first syllable of each word for another 1500 msec. After a 7000-msec break, the next sound–syllable pair was presented until all 30 pairs had been presented once. Testing: Each sound was presented for 500 msec and then the sound continued and subjects had 5000 msec to say the associated word aloud. After a break of 4000 msec, the procedure continued for the rest of the 30 associations. Adapted from Forcato et al. (2020).  相似文献   

10.
We reconcile competing theories of the role of phonological memory in reading development, by uncovering their dynamic relationship during the first 5 years of school. Phonological memory, reading and phoneme awareness were assessed in 780 phonics‐educated children at age 4, 5, 6 and 9. Confirmatory factor analyses demonstrated that phonological memory loaded onto two factors: verbal short‐term memory (verbal STM; phonological tasks that loaded primarily on serial order memory) and nonword repetition. Using longitudinal structural equation models, we found that verbal STM directly predicted early word‐level reading from age 4 to 6, reflecting the importance of serial‐order memory for letter‐by‐letter decoding. In contrast, reading had no reciprocal influence on the development of verbal STM. The relationship between nonword repetition and reading was bidirectional across the 5 years of study: nonword repetition and reading predicted each other both directly and indirectly (via phoneme awareness). Indirect effects from nonword repetition (and verbal STM) to reading support the view that phonological memory stimulates phonemically detailed representations through repeated encoding of complex verbal stimuli. Similarly, the indirect influence of reading on nonword repetition suggests that improved reading ability promotes the phoneme‐level specificity of phonological representations. Finally, the direct influence from reading to nonword repetition suggests that better readers use orthographic cues to help them remember and repeat new words accurately. A video abstract of this article can be viewed at https://www.youtube.com/watch?v=70LZfTR0BjE .  相似文献   

11.
The positive impact of sleep on memory consolidation has been shown for human subjects in numerous studies, but there is still sparse knowledge on this topic in rats, one of the most prominent model species in neuroscience research. Here, we examined the role of sleep in the object-place recognition task, a task closely comparable to tasks typically applied for testing human declarative memory: It is a one-trial task, hippocampus-dependent, not stressful and can be repeated within the same animal. A test session consisted of the Sample trial, followed by a 2-h retention interval and a Test trial, the latter examining the memory the rat had for the places of two objects presented at the Sample trial. In Experiment 1, each rat was tested twice, with the retention interval taking place either in the morning or evening, i.e., in the inactive or active phase, respectively. Rats showed significantly (p<0.01) better memory for object place after the Morning session. To control for confounding circadian factors, in Experiment 2 rats were tested four times, i.e., in the morning or in the evening while sleep was or was not deprived. Sleep during the retention interval was recorded polysomnographically. Rats only showed significant memory for the target object place in the Test trial after the Morning retention interval in the absence of sleep deprivation, and recognition performance in this condition was significantly superior to that in the three other conditions (p<0.05). EEG recordings during spontaneous morning sleep revealed increased slow oscillation (0.85-2.0 Hz) and upper delta (2.0-4.0 Hz), but reduced spindle band (10.5-13.5 Hz) activity, as compared to evening sleep. However, spindle band power was increased in the Morning retention interval in comparison to a Morning Baseline period (p<0.05). We conclude that consolidation of object-place memory depends on sleep, and presumably requires NonREM sleep rich in both slow wave and spindle activity.  相似文献   

12.
Sleep is known to support the neocortical consolidation of declarative memory, including the acquisition of new language. Autism spectrum disorder (ASD) is often characterized by both sleep and language learning difficulties, but few studies have explored a potential connection between the two. Here, 54 children with and without ASD (matched on age, nonverbal ability and vocabulary) were taught nine rare animal names (e.g., pipa). Memory was assessed via definitions, naming and speeded semantic decision tasks immediately after learning (pre‐sleep), the next day (post‐sleep, with a night of polysomnography between pre‐ and post‐sleep tests) and roughly 1 month later (follow‐up). Both groups showed comparable performance at pre‐test and similar levels of overnight change on all tasks; but at follow‐up children with ASD showed significantly greater forgetting of the unique features of the new animals (e.g., pipa is a flat frog). Children with ASD had significantly lower central non‐rapid eye movement (NREM) sigma power. Associations between spindle properties and overnight changes in speeded semantic decisions differed by group. For the TD group, spindle duration predicted overnight changes in responses to novel animals but not familiar animals, reinforcing a role for sleep in the stabilization of new semantic knowledge. For the ASD group, sigma power and spindle duration were associated with improvements in responses to novel and particularly familiar animals, perhaps reflecting more general sleep‐associated improvements in task performance. Plausibly, microstructural sleep atypicalities in children with ASD and differences in how information is prioritized for consolidation may lead to cumulative consolidation difficulties, compromising the quality of newly formed semantic representations in long‐term memory.  相似文献   

13.
Skilled performance is a collective function of practice‐related experiences (online learning) and post‐practice memory consolidation during sleep (offline learning). This study examines the effects of ageing and cognitive impairment on the on‐ and offline learning of a point‐to‐point arm movement. In a 3‐day experiment, older adults (cognitively normal or impaired) and young adults (YAs) were randomly assigned to practice or no‐practice conditions. Changes in the dependent measures of movement time and timing error were analysed within and between conditions across days. The findings suggest that both age and cognitive function affect skill learning. YAs improved performance via both on‐ and offline learning whereas older adults with normal cognitive capacities appeared to learn the movement skill primarily in an online mode. Cognitive impairments were found to hinder both types of skill learning. Implications for motor skill acquisition and rehabilitation are briefly discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Performance on many decision‐making tasks is underpinned by metacognitive monitoring, cognitive abilities, and executive functioning. Fatigue‐inducing conditions, such as sleep loss, compromise these factors, leading to decline in decision performance. Using a 40‐hr sleep deprivation protocol, we examined these factors and the resulting decision performance. Thirteen Australian Army male volunteers (aged 20–30 years) were tested at multiple time points on psychomotor vigilance, inhibitory control, task switching, working memory, short‐term memory, fluid intelligence, and decision accuracy and confidence in a medical diagnosis‐making test. Assessment took place in the morning and night over two consecutive days, during which participants were kept awake. Consistent with previous work, cognitive performance declined after a night without sleep. Extending previous findings, self‐regulation and self‐monitoring suffered significantly greater declines immediately after the sleepless night. These results indicate that the known decline in complex decision‐making performance under fatigue‐inducing conditions might be facilitated by metacognitive rather than cognitive mechanisms.  相似文献   

15.
Sleep is considered to support the formation of skill memory. In juvenile but not adult song birds learning a tutor's song, a stronger initial deterioration of song performance over night‐sleep predicts better song performance in the long run. This and similar observations have stimulated the view of sleep supporting skill formation during development in an unsupervised off‐line learning process that, in the absence of external feedback, can initially also enhance inaccuracies in skill performance. Here we explored whether in children learning a motor sequence task, as in song‐learning juvenile birds, changes across sleep after initial practice predict performance levels achieved in the long run. The task was a serial reaction time task (SRTT) where subjects had to press buttons which were lighted up in a repeating eight‐element sequence as fast as possible. Twenty‐five children (8–12 years) practised the task in the evening before nocturnal sleep which was recorded polysomnographically. Retrieval was tested on the following morning and again 1 week later after daily training on the SRTT. As expected, changes in response speed over the initial night of sleep were negatively correlated with final performance speed after the 1‐week training. However, unlike in song birds, this correlation was driven by the baseline speed level achieved before sleep. Baseline‐corrected changes in speed or variability over the initial sleep period did not predict final performance on the trained SRTT sequence, or on different sequences introduced to assess generalization of the trained behaviour. The lack of correlation between initial sleep‐dependent changes and long‐term performance might reflect that the children were too experienced for the simple SRTT, possibly also favouring ceiling effects in performance. A consistent association found between sleep spindle activity and explicit sequence knowledge alternatively suggests that the expected correlation was masked by explicit memory systems interacting with skill memory formation.  相似文献   

16.
17.
Declarative memory consolidation: mechanisms acting during human sleep   总被引:10,自引:0,他引:10       下载免费PDF全文
Of late, an increasing number of studies have shown a strong relationship between sleep and memory. Here we summarize a series of our own studies in humans supporting a beneficial influence of slow-wave sleep (SWS) on declarative memory formation, and try to identify some mechanisms that might underlie this influence. Specifically, these experiments show that declarative memory benefits mainly from sleep periods dominated by SWS, whereas there is no consistent benefit of this memory from periods rich in rapid eye movement (REM) sleep. A main mechanism of declarative memory formation is believed to be the reactivation of newly acquired memory representations in hippocampal networks that stimulates a transfer and integration of these representations into neocortical neuronal networks. Consistent with this model, spindle activity and slow oscillation-related EEG coherence increase during early sleep after intense declarative learning in humans, signs that together point toward a neocortical reprocessing of the learned material. In addition, sleep seems to provide an optimal milieu for declarative memory reprocessing and consolidation by reducing cholinergic activation and the cortisol feedback to the hippocampus during SWS.  相似文献   

18.
Sleep architecture as well as memory function are strongly age dependent. Slow wave sleep (SWS), in particular, decreases dramatically with increasing age, starting already beyond the age of 30. SWS normally predominates during early nocturnal sleep and is implicated in declarative memory consolidation. However, the consequences of changes in sleep across the life span for sleep-associated memory consolidation have not been evaluated so far. Here, we compared declarative memory consolidation (for word-pair associates) during sleep in young and middle-aged healthy humans. The age groups (18–25 vs. 48–55 yr) did not differ with regard to learning performance before retention periods that covered, respectively, the first and second half of nocturnal sleep. However, after early retention sleep, where the younger subjects showed distinctly more SWS than the middle-aged (62.3 ± 3.7 min vs. 18.4 ± 7.2 min, P < 0.001), retrieval of the word pairs in the middle-aged was clearly worse than in the young (P < 0.001). In contrast, declarative memory retention did not differ between groups after late sleep, where retention was generally worse than after early sleep (P = 0.005). Retention of declarative memories was the same in both age groups when sleep periods containing equal amounts of SWS were compared, i.e., across late sleep in the young and across early sleep in the middle-aged. Our results indicate a decline in sleep-associated declarative memory consolidation that develops already during midlife and is associated with a decrease in early nocturnal SWS.  相似文献   

19.
Sleep plays an active role in memory consolidation. Because children with Down syndrome (DS) and Williams syndrome (WS) experience significant problems with sleep and also with learning, we predicted that sleep‐dependent memory consolidation would be impaired in these children when compared to typically developing (TD) children. This is the first study to provide a cross‐syndrome comparison of sleep‐dependent learning in school‐aged children. Children with DS (= 20) and WS (= 22) and TD children (= 33) were trained on the novel Animal Names task where they were taught pseudo‐words as the personal names of ten farm and domestic animals, e.g. Basco the cat, with the aid of animal picture flashcards. They were retested following counterbalanced retention intervals of wake and sleep. Overall, TD children remembered significantly more words than both the DS and WS groups. In addition, their performance improved following night‐time sleep, whereas performance over the wake retention interval remained stable, indicating an active role of sleep for memory consolidation. Task performance of children with DS did not significantly change following wake or sleep periods. However, children with DS who were initially trained in the morning continued to improve on the task at the following retests, so that performance on the final test was greater for children who had initially trained in the morning than those who trained in the evening. Children with WS improved on the task between training and the first retest, regardless of whether sleep or wake occurred during the retention interval. This suggests time‐dependent rather than sleep‐dependent learning in children with WS, or tiredness at the end of the first session and better performance once refreshed at the start of the second session, irrespective of the time of day. Contrary to expectations, sleep‐dependent learning was not related to baseline level of performance. The findings have significant implications for educational strategies, and suggest that children with DS should be taught more important or difficult information in the morning when they are better able to learn, whilst children with WS should be allowed a time delay between learning phases to allow for time‐dependent memory consolidation, and frequent breaks from learning so that they are refreshed and able to perform at their best.  相似文献   

20.
According to some views of cognitive growth, the development of working memory capacity can account for increases in the complexity of cognition. It has been difficult to ascertain, though, that there actually is developmental growth in capacity that cannot be attributed to other developing factors. Here we assess the role of item familiarity. We document developmental increases in working memory for visual arrays of English letters versus unfamiliar characters. Although letter knowledge played a special role in development between the ages of 6 and 8 years, children with adequate letter knowledge showed practically the same developmental growth in normalized functions for letters and unfamiliar characters. The results contribute to a growing body of evidence that the developmental improvement in working memory does not wholly stem from supporting processes such as encoding, mnemonic strategies, and knowledge. A video abstract is available at: https://www.youtube.com/watch?v=LJdqErLR2Hs&feature=youtu.be  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号