首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Right-Hemisphere Hypothesis posits that emotional stimuli are perceived more efficiently by the right hemisphere than by the left hemisphere. The current research examines this hypothesis by examining hemispheric asymmetries for the conscious and unconscious perception of emotional stimuli. Negative, positive, and neutral words were presented for 17 ms to one visual field or the other. Conscious perception was measured by using a subjective report-of-awareness measure reported by participants on each trial. Unconscious perception was measured using an "exclusion task," a form of word-stem-completion task. Consistent with previous research, there was a right-hemisphere advantage for the conscious perception of negative information. As in previous studies, this advantage for conscious perception occurred at the expense of unconscious perception. Specifically, there was a right-hemisphere inferiority for the unconscious perception of negative information. Contrary to the predictions of the Right-Hemisphere Hypothesis, there were no hemispheric asymmetries for the perception of positive emotional information, thus suggesting that the Right-Hemisphere Hypothesis may not be applicable to all behavioral studies.  相似文献   

2.
Two “same-different” reaction time experiments, analogous in task demands made on the S, were designed to test laterality differences in. perception. Ten normal right-handed Ss performed a verbal task in which they decided whether or not two three-letter words belonged to the same conceptual class. Ten different Ss performed a spatial task in which they decided whether two 16-cell matrices with 3 blackened cells were identical. Reaction times were found to be sensitive to laterality differences in perception. Verbal stimuli were processed faster when presented in the right visual field, and thus projected directly to the left cerebral hemisphere; spatial stimuli were processed faster when presented in the left visual field, and thus projected directly to the right cerebral hemisphere. These results were analyzed in terms of implications regarding hemispheric asymmetries for processing of verbal and spatial material and the nature of interhemispheric transfer of information.  相似文献   

3.
Research on the lateralisation of brain functions for emotion has yielded different results as a function of whether it is the experience, expression, or perceptual processing of emotion that is examined. Further, for the perception of emotion there appear to be differences between the processing of verbal and nonverbal stimuli. The present research examined the hemispheric asymmetry in the processing of verbal stimuli varying in emotional valence. Participants performed a lexical decision task for words varying in affective valence (but equated in terms of arousal) that were presented briefly to the right or left visual field. Participants were significantly faster at recognising positive words presented to the right visual field/left hemisphere. This pattern did not occur for negative words (and was reversed for high arousal negative words). These results suggest that the processing of verbal stimuli varying in emotional valence tends to parallel hemispheric asymmetry in the experience of emotion.  相似文献   

4.
Research on the lateralisation of brain functions for emotion has yielded different results as a function of whether it is the experience, expression, or perceptual processing of emotion that is examined. Further, for the perception of emotion there appear to be differences between the processing of verbal and nonverbal stimuli. The present research examined the hemispheric asymmetry in the processing of verbal stimuli varying in emotional valence. Participants performed a lexical decision task for words varying in affective valence (but equated in terms of arousal) that were presented briefly to the right or left visual field. Participants were significantly faster at recognising positive words presented to the right visual field/left hemisphere. This pattern did not occur for negative words (and was reversed for high arousal negative words). These results suggest that the processing of verbal stimuli varying in emotional valence tends to parallel hemispheric asymmetry in the experience of emotion.  相似文献   

5.
Sato W  Aoki S 《Brain and cognition》2006,62(3):261-266
Right hemispheric dominance in unconscious emotional processing has been suggested, but remains controversial. This issue was investigated using the subliminal affective priming paradigm combined with unilateral visual presentation in 40 normal subjects. In either left or right visual fields, angry facial expressions, happy facial expressions, or plain gray images were briefly presented as negative, positive, and control primes, followed by a mosaic mask. Then nonsense target ideographs were presented, and the subjects evaluated their partiality toward the targets. When the stimuli were presented in the left, but not the right, visual fields, the negative primes reduced the subjects' liking for the targets, relative to the case of the positive or control primes. These results provided behavioral evidence supporting the hypothesis that the right hemisphere is dominant for unconscious negative emotional processing.  相似文献   

6.
《Brain and cognition》2007,63(3):261-266
Right hemispheric dominance in unconscious emotional processing has been suggested, but remains controversial. This issue was investigated using the subliminal affective priming paradigm combined with unilateral visual presentation in 40 normal subjects. In either left or right visual fields, angry facial expressions, happy facial expressions, or plain gray images were briefly presented as negative, positive, and control primes, followed by a mosaic mask. Then nonsense target ideographs were presented, and the subjects evaluated their partiality toward the targets. When the stimuli were presented in the left, but not the right, visual fields, the negative primes reduced the subjects’ liking for the targets, relative to the case of the positive or control primes. These results provided behavioral evidence supporting the hypothesis that the right hemisphere is dominant for unconscious negative emotional processing.  相似文献   

7.
The purpose of this study was to investigate hemispheric functional asymmetry in 18 normal hearing children and 18 congenitally deaf children aged 13-14 years. The task was identification of a visual stimulus (3-letter word or photograph of a face) presented in either the left or right visual field. The children responded by pointing to the target stimulus on a response card which contained four different words or three different faces. The percentage of errors for presentations to the two visual fields were analysed to determine hemispheric dominance. The pattern of hemispheric differences for the hearing children was consistent with that from previous investigations. The results for the deaf children differed from those of the normals. In word perception we observed a right hemisphere advantage and in the face recognition a lack of hemispheric differences. These results point to a lack of auditory experiences which is affecting the functional organization of the two hemispheres. It is suggested that the necessity to make use of visuo-spatial information in the process of communication causes right hemisphere dominance in verbal tasks. This may influence the perception of other visuo-spatial stimuli which may yield a lack of hemispheric asymmetry in face recognition.  相似文献   

8.
Hemispheric alpha asymmetries of males and females were observed during perceptual and motor tasks requiring recall and recognition of words controlled for level of arousal (positive, negative, and neutral). Verbal reports of individual processing strategy were collected and analyzed relative to hemispheric alpha ratios. Results showed greater alpha suppression in the left relative to right hemisphere for recall as compared to recognition tasks and for word presentation when contrasted with motor conditions. High positive correlations were found between narrative report of processing strategy and hemispheric alpha data. A separate analysis revealed that seven subjects identified as highly analytic processors showed greater alpha suppression in the left relative to right hemisphere across tasks, conditions, and stimuli than did seven highly visual processors who, in contrast, demonstrated greater right hemispheric alpha suppression. Task difficulty and individual differences in processing style that modify cerebral laterality effects are discussed.  相似文献   

9.
The processing of sine-wave gratings presented to the left and right visual fields was examined in four experiments. Subjects were required either to detect the presence of a grating (Experiments 1 and 2) or to identify the spatial frequency of a grating (Experiments 3 and 4). Orthogonally to this, the stimuli were presented either at threshold levels of contrast (Experiments 1 and 3) or at suprathreshold levels (Experiments 2 and 4). Visual field and spatial frequency interacted when the task required identification of spatial frequency, but not when it required only stimulus detection. Regardless of contrast level (threshold, suprathreshold), high-frequency gratings were identified more readily in the right visual field (left hemisphere), whereas low-frequency gratings showed no visual field difference (Experiment 3) or were identified more readily in the left visual field (right hemisphere) (Experiment 4). Thus, hemispheric asymmetries in the processing of spatial frequencies depend on the task. These results support Sergent’s (1982) spatial frequency hypothesis, but only when the computational demands of the task exceed those required for the simple detection of the stimuli.  相似文献   

10.
ABSTRACT— Recent work has found support for two dissociable and parallel neural subsystems underlying object and shape recognition in the visual domain: an abstract-category subsystem that operates more effectively in the left cerebral hemisphere than in the right, and a specific-exemplar subsystem that operates more effectively in the right hemisphere than in the left. Evidence of this asymmetry has been observed for linguistic stimuli (words, pseudoword forms) and nonlinguistic stimuli (objects). In the auditory domain, we previously found hemispheric asymmetries in priming effects using linguistic stimuli (spoken words). In the present study, we conducted four long-term repetition-priming experiments to investigate whether such hemispheric asymmetries would be observed for nonlinguistic auditory stimuli (environmental sounds) as well. The results support the dissociable-subsystems theory. Specificity effects were obtained when sounds were presented to the left ear (right hemisphere), but not when sounds were presented to the right ear (left hemisphere). Theoretical implications are discussed.  相似文献   

11.
There is evidence that automatic visual attention favors the right side. This study investigated whether this lateral asymmetry interacts with the right hemisphere dominance for visual location processing and left hemisphere dominance for visual shape processing. Volunteers were tested in a location discrimination task and a shape discrimination task. The target stimuli (S2) could occur in the left or right hemifield. They were preceded by an ipsilateral, contralateral or bilateral prime stimulus (S1). The attentional effect produced by the right S1 was larger than that produced by the left S1. This lateral asymmetry was similar between the two tasks suggesting that the hemispheric asymmetries of visual mechanisms do not contribute to it. The finding that it was basically due to a longer reaction time to the left S2 than to the right S2 for the contralateral S1 condition suggests that the inhibitory component of attention is laterally asymmetric.  相似文献   

12.
Using a signal detection paradigm, participants’ sensitivity to emotionally toned stimuli was evaluated in five experiments. A tachistoscope was used to present stimuli to one hemisphere at a time, too rapidly for conscious identification. Pictures, words, and faces were pretested for emotional valence and familiarity. Stimulus selection was based on obtaining the largest possible difference between the positive and negative valence ratings, keeping familiarity equal. Each experiment used a 2×2×2 mixed groups design. The within-subject variables were the hemispheric presentation (right and left) and the emotional tone of the stimuli (positive and negative). Gender of the participant was the between-subjects variable. The results of these studies indicate greater sensitivity in the right than in the left hemisphere, and greater sensitivity to positive than to negative stimuli. Interpretations focus on the automatization of affect and the brain lateralization of emotional processing.  相似文献   

13.
Using a signal detection paradigm, participants’ sensitivity to emotionally toned stimuli was evaluated in five experiments. A tachistoscope was used to present stimuli to one hemisphere at a time, too rapidly for conscious identification. Pictures, words, and faces were pretested for emotional valence and familiarity. Stimulus selection was based on obtaining the largest possible difference between the positive and negative valence ratings, keeping familiarity equal. Each experiment used a 2×2×2 mixed groups design. The within-subject variables were the hemispheric presentation (right and left) and the emotional tone of the stimuli (positive and negative). Gender of the participant was the between-subjects variable. The results of these studies indicate greater sensitivity in the right than in the left hemisphere, and greater sensitivity to positive than to negative stimuli. Interpretations focus on the automatization of affect and the brain lateralization of emotional processing.  相似文献   

14.
Emotion recognition is mediated by a complex network of cortical and subcortical areas, with the two hemispheres likely being differently involved in processing positive and negative emotions. As results on valence-dependent hemispheric specialisation are quite inconsistent, we carried out three experiments with emotional stimuli with a task being sensitive to measure specific hemispheric processing. Participants were required to bisect visual lines that were delimited by emotional face flankers, or to haptically bisect rods while concurrently listening to emotional vocal expressions. We found that prolonged (but not transient) exposition to concurrent happy stimuli significantly shifted the bisection bias to the right compared to both sad and neutral stimuli, indexing a greater involvement of the left hemisphere in processing of positively connoted stimuli. No differences between sad and neutral stimuli were observed across the experiments. In sum, our data provide consistent evidence in favour of a greater involvement of the left hemisphere in processing positive emotions and suggest that (prolonged) exposure to stimuli expressing happiness significantly affects allocation of (spatial) attentional resources, regardless of the sensory (visual/auditory) modality in which the emotion is perceived and space is explored (visual/haptic).  相似文献   

15.
Evoked potentials to laterally presented stimuli were collected from left and right tempero-parietal sites during performance of two visual half-field tasks, lexical decision, and line orientation discrimination. Reaction time and accuracy data were simultaneously collected. The behavioral data indicated the development of a right field advantage for the lexical decision task as a function of practice. A principal components analysis revealed three independent evoked potential components which displayed task-dependent hemispheric asymmetries. Multiple regression analyses revealed that visual half-field asymmetries in response accuracy were closely related to hemispheric asymmetries on several independent evoked response components. Subject's scores on independent tests of verbal reasoning and spatial relations were also found to be closely related to hemispheric asymmetry on several independent evoked response components. These data support a multidimensional concept of cerebral specialization. They also suggest that visual field asymmetries reflect the confluence of several underlying processes which have independent lateralization distributions across the population. In general, the results underscore the need for further research on the nature of the relationship between cerebral and perceptual asymmetries.  相似文献   

16.
To ascertain whether there are ear-hemisphere asymmetries of selective attention, signal stimuli (tonal sequences) were presented monaurally with and without complex maskers (music and speech). The right ear-left hemisphere was more disrupted by language maskers; the left ear-right hemisphere was more disrupted by music maskers. These results suggest that there are hemispheric asymmetries of selective attention and that the ear hemisphere that usually processes a class of stimuli has greater difficulty filtering out those stimuli than does the nonspecialized hemisphere.  相似文献   

17.
This study examined predictions based upon the right hemisphere (RH) model, the valence–arousal model, and a recently proposed integrated model (Killgore & Yurgelun-Todd, 2007) of emotion processing by testing immediate recall and recognition memory for positive, negative, and neutral verbal stimuli among 35 right-handed women. Building upon methodologies of previous studies, we found that words presented to the right visual field/left hemisphere (RVF/LH) were recalled and recognized more accurately than words presented to the left visual field/right hemisphere (LVF/RH), and we found significant valence by visual field interactions. Some findings were consistent with one of the models evaluated whereas others were consistent with none of the models evaluated. Our findings suggest that an integration of the RH and valence–arousal models may best account for the findings with regard to hemispheric lateralization of memory for emotional stimuli.  相似文献   

18.
The study set out to examine whether the cerebral hemispheres differ in their ability to regulate cortisol secretion during emotion-related situations. One hundred twenty-three adult subjects were shown either an emotionally aversive or a neutral film in the left or right hemisphere by means of a technique for lateralizing visual input that allows prolonged viewing while permitting free ocular scanning. The film-related changes of cortisol secretion were determined by salivary cortisol radioimmunoassay. Right hemispheric viewing of the emotionally aversive film resulted in a significantly higher increase of cortisol secretion than left hemispheric viewing of the same film. No such differences were observed with respect to the neutral film. Comparing the effects of the two films separately for each hemisphere revealed that only the right hemisphere was able to respond neuroendocrinologically in a different manner to the emotional and the neutral film. Therefore, it is concluded that cortical regulation of cortisol secretion in emotion-related situations is under primary control of the right hemisphere. The potential implications of asymmetric control of cortisol secretion with respect to the pathogenesis of psychosomatic and immunological disorders are discussed.  相似文献   

19.
Hemisphere differences in conscious and unconscious word reading   总被引:1,自引:0,他引:1  
Hemisphere differences in word reading were examined using explicit and implicit processing measures. In an inclusion task, which indexes both conscious (explicit) and unconscious (implicit) word reading processes, participants were briefly presented with a word in either the right or the left visual field and were asked to use this word to complete a three-letter word stem. In an exclusion task, which estimates unconscious word reading, participants completed the word stem with any word other than the prime word. Experiment 1 showed that words presented to either visual field were processed in very similar ways in both tasks, with the exception that words in the right visual field (left hemisphere) were more readily accessible for conscious report. Experiment 2 indicated that unconsciously processed words are shared between the hemispheres, as similar results were obtained when either the same or the opposite visual field received the word stem. Experiment 3 demonstrated that this sharing between hemispheres is cortically mediated by testing a split-brain patient. These results suggest that the left hemisphere advantage for word reading holds only for explicit measures; unconscious word reading is much more balanced between the hemispheres.  相似文献   

20.
In this study hemispheric asymmetries for categorizing objects at the basic versus subordinate level of abstraction were investigated. As predictions derived from different theoretical approaches are contradictory and experimental evidence is inconclusive in this regard, we conducted two categorization experiments, where we contrasted two experimental paradigms. In the first experiment, subjects had to verify whether a word and a laterally presented picture matched or not. In the second experiment, subjects had to identify laterally presented pictures of animals either at the basic or subordinate level by pressing a corresponding response key. Whereas the first experiment revealed an advantage of the left hemisphere (LH) for categorizing objects at the basic level and of the right hemisphere (RH) for categorizing at the subordinate level, just the opposite brain asymmetry was found in the second experiment. As the stimuli were identical in both experiments, hemispheric asymmetries seem to be strongly task dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号