首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The McCollough effect is an orientation-specific color aftereffect induced by adapting to colored gratings. We examined how the McCollough effect depends on the relationships between color and luminance within the inducing and test gratings and compared the aftereffects to the color changes predicted from selective adaptation to different color—luminance combinations. Our results suggest that the important contingency underlying the McCollough effect is between orientation and color—luminance direction and are consistent with sensitivity changes within mechanisms tuned to specific color—luminance directions. Aftereffects are similar in magnitude for adapting color pairs that differ only in S cone excitation or L and M cone excitation, and they have a similar dependence on spatial frequency. In particular, orientation-specific aftereffects are induced for S cone colors even when the grating frequencies are above the S cone resolution limit. Thus, the McCollough effect persists even when different cone classes encode the orientation and color of the gratings.  相似文献   

2.
The McCollough effect is an orientation-specific color aftereffect induced by adapting to colored gratings. We examined how the McCollough effect depends on the relationships between color and luminance within the inducing and test gratings and compared the aftereffects to the color changes predicted from selective adaptation to different color-luminance combinations. Our results suggest that the important contingency underlying the McCollough effect is between orientation and color-luminance direction and are consistent with sensitivity changes within mechanisms tuned to specific color-luminance directions. Aftereffects are similar in magnitude for adapting color pairs that differ only in S cone excitation or L and M cone excitation, and they have a similar dependence on spatial frequency. In particular, orientation-specific aftereffects are induced for S cone colors even when the grating frequencies are above the S cone resolution limit. Thus, the McCollough effect persists even when different cone classes encode the orientation and color of the gratings.  相似文献   

3.
A “competition” paradigm was developed to examine separately the effects of pattern contrast and spatial frequency characteristics on the strength of orientation-contingent color aftereffects (McCollough effects). After adapting to alternately presented red/black and green/black square-wave gratings (one horizontal, one vertical), 11 subjects viewed seven different kinds of test patterns. Unlike Standard McCollough effect test stimuli, the present patterns had variable luminance profiles running both horizontally and vertically within each test pattern area. Forced choice responses were used to determine which aftereffect color (red or green) appeared, as characteristics of vertical and horizontal luminance profiles were varied separately among test stimulus types. We conclude that pattern contrast and human contrast sensitivity account for aftereffect colors in such stimuli. When contrast is taken into consideration, aftereffects are not predicted by similarity between adaptation and test pattern Fourier characteristics, nor are they predicted by the width, per se, of pattern elements.  相似文献   

4.
Prolonged viewing of bright vertical (horizontal) gratings alternating with dim horizontal (vertical) gratings generates negative brightness aftereffects that are contingent on the orientation of orthogonal test gratings. The effect is measured by a brightness cancellation technique, similar to the color cancellation technique used in measuring McCollough effects. Like the latter, brightness aftereffects appear to persist for long periods. The magnitude of these aftereffects is a positive monotonic function of the luminance difference between the inducing gratings, and it depends on the conditions of induction; monocular induction generates larger aftereffects than binocular induction does. The aftereffect transfers interocularly, although its magnitude in the contralateral eye is substantially attenuated; binocular measurement, following monocular induction, results in even smaller aftereffects. An attempt to understand these findings within the computational model of brightness perception developed by Grossberg and Mingolla (1985a, 1985b) is presented.  相似文献   

5.
We have investigated the reduction in estimated strength of McCollough effects that results from inspection of achromatic gratings. Longer inspection times were found to produce greater decreases in our assessments than shorter times. Following a rest period, increments in our strength index were observed, with greatest gains associated with shortest inspection times, and least gains with longest times. Our results can be construed as supportive of a learning model of McCollough effects, or, alternatively, as suggesting the existence of achromatic McCollough effects.  相似文献   

6.
The McCollough effect was shown to be spatial-frequency selective by Lovegrove and Over (1972) after adaptation with vertical colored square-wave gratings separated by 1 octave. Adaptation with slide-presented red and green vertical square-wave gratings separated by 1 octave failed to produce contingent color aftereffects (CAEs).However, when each of these gratings was adapted alone, strong CAEs were produced. Adaptation with vertical colored sine-wave gratings separated by 1 octave also failed to produce CAEs, but strong effects were produced by adaptation with each grating alone. By varying the spatial frequency of the test sine wave, CAEs were found to be tuned for spatial frequency at 2.85 octaves after adaptation of 4 cycles per degree (cpd) and at 2.30 octaves after adaptation of 8 cpd. Adaptation of both vertical and horizontal sine-wave gratings produced strong CAEs, with bandwidths ranging from 1.96 to 2.90 octaves and with lower adapting contrast producing weaker CAEs. These results indicate that the McCollough effect is more broadly tuned for spatial frequency than are simple adaptation effects.  相似文献   

7.
The McCollough effect was shown to be spatial-frequency selective by Lovegrove and Over (1972) after adaptation with vertical colored square-wave gratings separated by 1 octave. Adaptation with slide-presented red and green vertical square-wave gratings separated by 1 octave failed to produce contingent color aftereffects (CAEs). However, when each of these gratings was adapted alone, strong CAEs were produced. Adaptation with vertical colored sine-wave gratings separated by 1 octave also failed to produce CAEs, but strong effects were produced by adaptation with each grating alone. By varying the spatial frequency of the test sine wave, CAEs were found to be tuned for spatial frequency at 2.85 octaves after adaptation of 4 cycles per degree (cpd) and at 2.30 octaves after adaptation of 8 cpd. Adaptation of both vertical and horizontal sine-wave gratings produced strong CAEs, with bandwidths ranging from 1.96 to 2.90 octaves and with lower adapting contrast producing weaker CAEs. These results indicate that the McCollough effect is more broadly tuned for spatial frequency than are simple adaptation effects.  相似文献   

8.
Subjective estimates of McCollough aftereffect strength are significantly reduced when certain spatial features of the line grating patterns are manipulated. Results are dependent upon whether the spatial parameters of the test or inspection patterns are altered. Changing the angular slant, contour sharpness, or contour completeness of the inspection gratings does not affect aftereffect strength, but changing the spatial frequency, contour sharpness, or contour completeness of the test gratings does. The implications of these results are discussed with regard to theories offered to explain the McCollough effect.  相似文献   

9.
A McCollough effect was induced in subjects by having them view typical adapting stimuli binocularly for 5 min. In the control condition, the strength of the McCollough effect was measured 20 min after the end of the adaptation. The strength was measured during monocular and binocular viewing of a test pattern via a color cancellation technique. Monocular strengths for the two eyes of a given subject were equal to each other and slightly weaker than the binocular strength. In the test condition, 15 min of the 20 min between adaptation and testing were spent monocularly viewing black and white gratings of the same orientation and spatial frequency as the adapting gratings. The strength of the effect as measured ipsilaterally was markedly decreased from that in the control condition. The strength of the effect as measured with the contralateral eye showed only a small decrease from that of the control condition. This finding is relevant to various models of the McCollough effect and related color aftereffects, especially those that posit a “learning” type of mechanism between achromatic spatial channels (which exhibit clear interocular transfer of various achromatic effects) and monocular color channels.  相似文献   

10.
We examined whether the orientation-contingent color aftereffect (the McCollough effect) could be mediated by subjective horizontal and vertical structure induced by the perception of transparency. In our experiments, red vertical bars and green horizontal bars were alternated as an adapting stimulus. After adaptation, subjects (n = 6) were asked to adjust the green and red saturation of a test pattern until they obtained a neutral gray. Horizontal and vertical stripes were combined in the test pattern in three different ways: (1) overlapping with a luminance combination that gave rise to a perception of transparent overlays of horizontal and vertical stripes (valid transparency condition), (2) overlapping with luminance combinations that did not induce a perception of transparency (invalid transparency condition) and that appeared more as a patchwork of checks, and (3) presented in adjacent, nonoverlapping areas. Our results showed that the McCollough effect was significantly greater in the valid transparency condition than in the invalid transparency conditions. The effect in the valid transparency condition was nevertheless less strong than was the effect seen with the standard test stimulus made up of nonoverlapping vertical and horizontal stripes. Our results suggest that the McCollough effect can be mediated by the subjective spatial organization (inner representation of vertical and horizontal stripes) that accompanies the perception of transparency in our stimulus.  相似文献   

11.
Motion hyperacuity (phase) thresholds were measured for both lateral and stereoscopic oscillatory motion in both luminance and equiluminant red/green gratings of 2 cycles per degree. Thresholds for lateral chromatic motion did not exhibit the inhibitory fall-off at low temporal frequencies that was found for luminance motion. Phase thresholds for purely chromatic motion were substantially higher than those for luminance gratings, in proportion to the ratio of cone signal modulation, but they could be predicted from the corresponding contrast sensitivities for both types of stimulus. Stereomovement thresholds in luminance gratings showed the stereomovement suppression effect relative to monocular motion sensitivity previously reported for line stimuli, but purely chromatic gratings did not. Together with the lack of an inhibitory fall-off, these results imply that chromatic and luminance motion are processed by different neural pathways, and that the chrominance pathway is capable of supporting a strong percept of stereoscopic motion from purely chromatic gratings.  相似文献   

12.
An experiment was conducted to determine whether the decay rate of the McCollough effect could be differentially influenced by the type of visual stimulation that followed its induction. After acquiring this effect, Os were exposed to achromatic gratings, homogeneous chromatic fields, natural visual stimulation, or complete darkness. Exposure to achromatic gratings caused a marked fading of the effect; the other types of stimulation were associated with similar and much less rapid decay.  相似文献   

13.
The McCollough effect is a striking color aftereffect that is linked to the orientation of the patterns used to induce it. To produce the McCollough effect, two differently oriented grating patterns, such as a red-and-black vertical grating and a green-and-black horizontal grating, are viewed alternately for a few minutes. After such colored gratings are viewed, the white sections of avertical black-and-white test grating appear to be tinged with green, and the white sections of a horizontal grating appear to be tinged with pink. We present evidence from a functional magnetic resonance imaging study that the perception of the McCollough effect correlates with increased activation in the lingual and fusiform gyriùextrastriate visual areas that have been implicated in color perception in humans.  相似文献   

14.
We examined whether the orientation-contingent color aftereffect (the McCollough effect) could be mediated by subjective horizontal and vertical structure induced by the perception of transparency. In our experiments, red vertical bars and green horizontal bars were alternated as an adapting stimulus. After adaptation, subjects (n=6) were asked to adjust the green and red saturation of a test pattern until they obtained a neutral gray. Horizontal and vertical stripes were combined in the test pattern in three different ways: (1) overlapping with a luminance combination that gave rise to a perception of transparent overlays of horizontal and vertical stripes (valid transparency condition), (2) overlapping with luminance combinations that did not induce a perception of transparency (invalid transparency condition) and that appeased more as a patchwork of checks, and (3) presented in adjacent, nonoverlapping areas. Our results showed that the McCollough effect was significantly greater in the valid transparency condition than in the invalid transparency conditions. The effect in the valid transparency condition was nevertheless less strong than was the effect seen with the standard test stimulus made up of nonoverlapping vertical and horizontal stripes, Our results suggest that the McCollough effect can be mediated by the subjective spatial organization (inner representation of vertical and horizontal stripes) that accompanies the perception of transparency in our stimulus.  相似文献   

15.
The intensity of the McCollough effect is modified when, following exposure to the inducing chromatic stimuli, the achromatic test gratings are seen oscillating orthogonally to their orientations. Green aftereffect seen on stationary test gratings is enhanced by oscillations, while pink aftereffect present on the stationary gratings fades upon oscillation of the test stimulus. These opponent changes are tentatively accounted for in terms of an interaction between Fechner-Benham type induced color and processes that mediate the orientation-specific chromatic aftereffects.  相似文献   

16.
Orientation-specific brightness aftereffects were found when vertical and horizontal gratings of the same space-average luminance were viewed following alternate exposure to vertical and horizontal gratings that differed in space-average luminance. The vertical test grating appeared bright following exposure to a dim vertical grating, and dim after a bright vertical grating had been viewed. This aftereffect did not occur when the adaptation gratings had been seen by one eye and the test gratings by the other eye. An orientation-specific illusion in the perception of brightness was also found, with the white sectors of a vertical grating appearing brighter against a background of horizontal lines than they did against a background of vertical lines. Both distortions imply that there are detectors in the human visual system that are conjointly tuned to luminance and contour orientation.  相似文献   

17.
Eighteen Ss were required to track the apparent motion of a stationary grating viewed after prolonged inspection of a moving grating. Measures were obtained with the inspection and test gratings identical in contrast but different in space-average luminance, or with luminance held constant and contrast varied. The aftereffect was reduced as the gratings differed in space-average luminance, but contrast exerted less uniform influence as a variable. Brightness-selectivity in the motion aftereffect is interpreted within the selective adaptation model of aftereffects as evidence that some detectors in human vision are conjointly tuned to space-average luminance and image motion.  相似文献   

18.
Two experiments investigated the effects of differing perceptual organizations of reversible figures on McCollough aftereffects. Experiment 1 used colored checkerboard inducing stimuli and achromatic grating test stimuli. While some subjects tended to organize the checkerboards into rows and/or columns and others to organize them into obliques, these variations did not result in differences in aftereffect direction or magnitude. Experiment 2 induced an aftereffect with colored gratings and tested with checkerboards, gratings, and a reversible concentric octagon pattern. Perceptual organization had no effect on results for checkerboards, but was related to aftereffect strength for the octagon pattern. Indirect evidence suggests that, in the latter case, differences in aftereffect strength may have influenced the perceived organization, rather than vice versa. Finally, regardless of the specific organization perceived, spontaneous viewing of all test stimuli produced stronger aftereffects than were found when subjects reorganized the pattern. This may have resulted from a viewing strategy associated with reorganization, since similarly small aftereffects were found when subjects concentrated their attention on a single pattern element.  相似文献   

19.
Liu, Tyler, and Schor (1992 Vision Research 32 1471-1479) reported the surprising finding that dichoptically presented orthogonal sine-wave gratings do not always produce binocular rivalry. Gratings of high spatial frequency, and especially of low contrast, fuse to produce a stable percept of a dichoptic plaid. Using a somewhat different perceptual task, we replicated those findings and extended them. The probability of a plaid percept is higher for square-wave gratings than for sine-wave gratings, and higher still for rectangular-wave gratings with high duty cycles (with very thin light or dark bars). Experiments were conducted to test whether this duty-cycle effect was due to changes in overall luminance, or in the size of the regions of luminance congruity (which may reduce the probability of rivalry), but no such effects could account for the results. The presence of locally conflicting contour information in the two eyes was shown to be an important determinant of rivalry onset, but, since removing such regions did not eliminate rivalry, other factors also have a role to play. The spatial frequency composition of the gratings is one such factor which is consistent with all of the findings we report.  相似文献   

20.
Using a color-cancellation technique, the strength of the McCollough effect was measured in units of excitation purity. The strength was studied both as a function of the contrast of the adapting gratings and as a function of the angle × between the axes of the test and the adapting gratings. Results were well described as a linear function of the contrast of the adapting gratings and as a cos(2×) function of the angle. Both functions were combined to express an equivalent contrast transformation which converts the measurements of orientation tuning into a unit comparable to that used for other kinds of orientation-specific aftereffects. The orientation tuning was found to be very broad with a half-width at half amplitude of approximately 27°. This estimate is considered to be a substantial underestimate of the actual tuning of the aftereffect’s substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号