首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporal integration of continuous sensory information into a temporally extended percept becomes evident in spontaneous reversals of ambiguous apparent motion. To study the temporal relation of spontaneous percept reversals and temporal stimulus properties, we systematically varied presentation frequency in an ambiguous-apparent-motion paradigm. Moreover, we triggered percept reversals in a manner that was not consciously perceived by manipulating the duration of single frames. We found that the reversal rate depended on the stimulus frequency (with higher frequencies resulting in faster percept reversals) and that we could externally trigger perceptual reversals. Our findings support the idea that spontaneous reversals of ambiguous apparent motion are influenced by bottom-up effects at early processing levels. The paradigm allows for specific contrasts of spontaneous and externally triggered (but otherwise identical) perceptual reversals and, by this means, for further study of the underlying mechanisms.  相似文献   

2.
The effect of brief auditory stimuli on visual apparent motion   总被引:1,自引:0,他引:1  
Getzmann S 《Perception》2007,36(7):1089-1103
When two discrete stimuli are presented in rapid succession, observers typically report a movement of the lead stimulus toward the lag stimulus. The object of this study was to investigate crossmodal effects of irrelevant sounds on this illusion of visual apparent motion. Observers were presented with two visual stimuli that were temporally separated by interstimulus onset intervals from 0 to 350 ms. After each trial, observers classified their impression of the stimuli using a categorisation system. The presentation of short sounds intervening between the visual stimuli facilitated the impression of apparent motion relative to baseline (visual stimuli without sounds), whereas sounds presented before the first and after the second visual stimulus as well as simultaneously presented sounds reduced the motion impression. The results demonstrate an effect of the temporal structure of irrelevant sounds on visual apparent motion that is discussed in light of a related multisensory phenomenon, 'temporal ventriloquism', on the assumption that sounds can attract lights in the temporal dimension.  相似文献   

3.

It has been suggested that judgments about the temporal–spatial order of successive tactile stimuli depend on the perceived direction of apparent motion between them. Here we manipulated tactile apparent-motion percepts by presenting a brief, task-irrelevant auditory stimulus temporally in-between pairs of tactile stimuli. The tactile stimuli were applied one to each hand, with varying stimulus onset asynchronies (SOAs). Participants reported the location of the first stimulus (temporal order judgments: TOJs) while adopting both crossed and uncrossed hand postures, so we could scrutinize skin-based, anatomical, and external reference frames. With crossed hands, the sound improved TOJ performance at short (≤300 ms) and at long (>300 ms) SOAs. When the hands were uncrossed, the sound induced a decrease in TOJ performance, but only at short SOAs. A second experiment confirmed that the auditory stimulus indeed modulated tactile apparent motion perception under these conditions. Perceived apparent motion directions were more ambiguous with crossed than with uncrossed hands, probably indicating competing spatial codes in the crossed posture. However, irrespective of posture, the additional sound tended to impair potentially anatomically coded motion direction discrimination at a short SOA of 80 ms, but it significantly enhanced externally coded apparent motion perception at a long SOA of 500 ms. Anatomically coded motion signals imply incorrect TOJ responses with crossed hands, but correct responses when the hands are uncrossed; externally coded motion signals always point toward the correct TOJ response. Thus, taken together, these results suggest that apparent-motion signals are likely taken into account when tactile temporal–spatial information is reconstructed.

  相似文献   

4.
This article compares the properties of apparent motion between a light and a touch with apparent motion between either two lights or two touches. Visual and tactile stimulators were attached to the tips of the two index fingers that were held apart at different distances. Subjects rated the quality of apparent motion between each stimulus combination for a range of stimulus onset asynchronies (SOAs). Subjects reported perceiving apparent motion between all three stimulus combinations. For light—light visual apparent motion, the preferred SOA and the direction threshold SOAs increased as the distance between the stimuli increased (consistent with Korte’s third law of apparent motion). Touch—touch apparent motion also obeyed Korte’s third law, but over a smaller range of distances, showing that proprioceptive information concerning the position of the fingers is integrated into the tactile motion system. The threshold and preferred SOAs for visuotactile apparent motion did not vary with distance, suggesting a different mechanism for multimodal apparent motion.  相似文献   

5.
This article compares the properties of apparent motion between a light and a touch with apparent motion between either two lights or two touches. Visual and tactile stimulators were attached to the tips of the two index fingers that were held apart at different distances. Subjects rated the quality of apparent motion between each stimulus combination for a range of stimulus onset asynchronies (SOAs). Subjects reported perceiving apparent motion between all three stimulus combinations. For light-light visual apparent motion, the preferred SOA and the direction threshold SOAs increased as the distance between the stimuli increased (consistent with Korte's third law of apparent motion). Touch-touch apparent motion also obeyed Korte's third law, but over a smaller range of distances, showing that proprioceptive information concerning the position of the fingers is integrated into the tactile motion system. The threshold and preferred SOAs for visuotactile apparent motion did not vary with distance, suggesting a different mechanism for multimodal apparent motion.  相似文献   

6.
Two experiments compared the perception of apparent movement when the second of two successive stimuli always appeared in the same position and when it varied randomly between two spatial positions. The results of both experiments showed that foreknowledge of the position of the second stimulus does not facilitate the perception of apparent movement. Experiment 2 also clearly showed that the space-time relationships of Korte’s third law of apparent movement does not depend on foreknowledge of the position of the second stimulus. These findings imply that apparent movement in real time occurs after the second stimulus has been registered by the visual system. It suggests that apparent movement involves a delayed decision mechanism that stores the first stimulus, the interstimulus temporal interval, and the second stimulus, and then impletes a motion compatible with the stimulus information.  相似文献   

7.
Observers were presented stimulus patterns consisting of a sequence of three laterally displaced light flashes, which defined two spatial intervals and two temporal intervals. The position and time of the second flash were varied factorially, and observers were asked to make relative judgments of either the two spatial intervals or the two temporal intervals. “Induction” effects of stimulus timing on spatial judgments and of stimulus spacing on temporal judgments were both found; however, the directionality of these effects differed between subjects. The results are inconsistent with the hypothesis, derived from previous findings, that such effects are determined primarily by a tendency toward perceiving constant velocity of apparent motion; it is proposed that the directionality of the induction effects is determined largely by the strategy adopted by the observer for combining spatial and temporal stimulus information.  相似文献   

8.
The existence of a directional motion aftereffect (MAE) for long-range (LR) stroboscopic apparent motion (SAM) was examined with the use of a directionally ambiguous test stimulus. The spatial and temporal parameters were such that the LR, rather than the short-range, mechanism was likely to be implicated. MAEs were found for SAM, which were in the same direction, but somewhat weaker than those for a comparable stimulus in real motion. The MAEs for SAM were present only when good apparent motion was perceived, and could be shown also when only the unstimulated area between the two stroboscopic flashes was tested. The LR mechanism was further implicated, since the MAEs were also obtained under dichoptic adaptation conditions. It is concluded that the LR-motion mechanism does show a usual MAE under proper testing conditions.  相似文献   

9.
Six experiments investigated how changes in stimulus speed influence subjective duration. Participants saw rotating or translating shapes in three conditions: constant speed, accelerating motion, and decelerating motion. The distance moved and average speed were the same in all three conditions. In temporal judgment tasks, the constant-speed objects seemed to last longer than the decelerating objects, which in turn seemed to last longer than the accelerating stimuli. In temporal reproduction tasks, the difference between accelerating and decelerating stimuli disappeared; furthermore, watching an accelerating shape lengthened the apparent duration of the subsequent (static) display. These results (a) suggest that temporal judgment and reproduction can dissociate for moving stimuli because the stimulus influences the apparent duration of the subsequent interval, and (b) constrain theories of time perception, including those which emphasize memory storage, those which emphasize the existence of a pacemaker-accumulator timing system, and those which emphasize the division of attention between temporal and non-temporal information processing.  相似文献   

10.
A dynamical model is used to show that global motion pattern formation for several different apparent motion stimuli can be embodied in the stable distribution of activation over a population of concurrently activated, directionally selective motion detectors. The model, which is based on motion detectors being interactive, noisy, and self-stabilizing, accounts for such phenomena as bistability, spontaneous switching, hysteresis, and selective adaptation. Simulations show that dynamical solutions to the motion correspondence problem for a bistable stimulus (two qualitatively different patterns are formed) apply as well to the solution for a monostable stimulus (only one pattern is formed) and highlight the role of interactions among sequentially stimulated detectors in establishing the state dependence and, thereby, the temporal persistence of percepts.  相似文献   

11.
Yeshurun Y  Hein E 《Perception》2011,40(8):905-918
Transient spatial attention refers to the automatic selection of a location that is driven by the stimulus rather than a voluntary decision. Apparent motion is an illusory motion created by stationary stimuli that are presented successively at different locations. In this study we explored the effects of transient attention on apparent motion. The motion target presentation was preceded by either valid attentional cues that attract attention to the target location in advance (experiments 1-4), neutral cues that do not indicate a location (experiments 1, 3, and 4), or invalid cues that direct attention to a non-target location (experiment 2). Valid attentional cues usually improve performance in various tasks. Here, however, an attentional impairment was found. Observers' ability to discriminate the direction of motion diminished at the cued location. Analogous results were obtained regardless of cue type: singleton cue (experiment 1), central non-informative cue (experiment 2), or abrupt onset cue (experiment 3). Experiment 4 further demonstrated that reversed apparent motion is less likely with attention. This seemingly counterintuitive attentional degradation of perceived apparent motion is consistent with several recent findings, and together they suggest that transient attention facilitates spatial segregation and temporal integration but impairs spatial integration and temporal segregation.  相似文献   

12.
TIMING AND APPARENT MOTION PATH CHOICE WITH HUMAN BODY PHOTOGRAPHS   总被引:1,自引:0,他引:1  
Abstract— In demonstrations of apparent motion, observers typically report seeing motion along the shortest possible path between two sequentially presented objects. Recent work has demonstrated that violations of this shortest path rule occur with realistic photographs of a human body displayed for sufficiently long temporal intervals when a longer path is more anatomically plausible than the shortest path. The current set of experiments investigated the mechanisms by which information about biomechanical motion constrains apparent motion perception. In Experiment 1, we demonstrated, first, that the availability of extra processing time does not simply—in and of itself—result in the perception of longer paths of apparent motion. Second, we rejected the hypothesis that the perception of biomechanically correct paths of apparent motion depends on biologically appropriate velocities. In Experiment 2, we discovered that the longer the motion path required to satisfy the biomechanical movement limitations of the stimulus, the longer the time needed to construct and therefore perceive that path. These findings together suggest that additional processing time is necessary, but not sufficient, for interpolations of longer paths.  相似文献   

13.
In a first-order reversed-phi motion stimulus (Anstis, 1970), the black-white contrast of successive frames is reversed, and the direction of apparent motion may, under some conditions, appear to be reversed. It is demonstrated here that, for many classes of stimuli, this reversal is a mathematical property of the stimuli themselves, and the real problem is in perceiving forward motion, which involves the second- or third-order motion systems or both. Three classes of novel second-order reversed-phi stimuli (contrast, spatial frequency, and flicker modulation) that are invisible to first-order motion analysis were constructed. In these stimuli, the salient stimulus features move in the forward (feature displacement) direction, but the second-order motion energy model predicts motion in the reversed direction. In peripheral vision, for all stimulus types and all temporal frequencies, all the observers saw only the reversed-phi direction of motion. In central vision, the observers also perceived reversed motion at temporal frequencies above about 4 Hz, but they perceived movement in the forward direction at lower temporal frequencies. Since all of these stimuli are invisible to first-order motion, these results indicate that the second-order reversed-phi stimuli activate two subsequent competing motion mechanisms, both of which involve an initial stage of texture grabbing (spatiotemporal filtering, followed by fullwave rectification). The second-order motion system then applies a Reichardt detector (or equivalently, motion energy analysis) directly to this signal and arrives at the reversed-phi direction. The third-order system marks the location of features that differ from the background (the figure) in a salience map and computes motion in the forward direction from the changes in the spatiotemporal location of these marks. The second-order system's report of reversed movement dominates in peripheral vision and in central vision at higher temporal frequencies, because it has better spatial and temporal resolution than the third-order system, which has a cutoff frequency of 3-4 Hz (Lu & Sperling, 1995b). In central vision, below 3-4 Hz, the third-order system's report of resolvable forward movement of something salient (the figure) dominates the second-order system's report of texture contrast movement.  相似文献   

14.
A context-induced “illusion” in visual judgments of temporal order, termed the induced asynchrony effect (IAE), is reported. It consists of an apparent ordering in time of two simultaneous light onsets, produced by the preceding, asynchronous offsets of two other lights. The joint effect of a real stimulus onset asynchrony and a preceding stimulus offset asynchrony bn judgments of onset order appears to be additive, given a Gaussian transformation of response probability. This result is shown to be consistent with a simple statistical decision model, which provides a conceptual framework for drawing inferences from temporal order judgment data. However, it is emphasized that certain interpretations of such models are not empirically testable on the basis of temporal order data alone. An attempt is made to relate the IAE to three other dynamic perceptual phenomena; all four effects may reflect a tendency of observers to perceive the velocity of apparent motion as being constant. Questions raised by the demonstration of the IAE are discussed, and directions for further research are suggested.  相似文献   

15.
In a first-order reversed-phi motion stimulus (Anstis, 1970), the black-white contrast of successive frames is reversed, and the direction of apparent motion may, under some conditions, appear to be reversed. It is demonstrated here that, for many classes of stimuli, this reversal is a mathematical property of the stimuli themselves, and the real problem is in perceiving forward motion, which involves the second- or third-order motion systems or both. Three classes of novel second-order reversed-phi stimuli (contrast, spatial frequency, and flicker modulation) that are invisible to first-order motion analysis were constructed. In these stimuli, the salient stimulus features move in theforward (feature displacement) direction, but the second-order motion energy model predicts motion in thereversed direction. In peripheral vision, for all stimulus types and all temporal frequencies, all the observers saw only the reversed-phi direction of motion. In central vision, the observers also perceived reversed motion at temporal frequencies above about 4 Hz, but they perceived movement in the forward direction at lower temporal frequencies. Since all of these stimuli are invisible to first-order motion, these results indicate that the second-order reversed-phi stimuli activate two subsequent competing motion mech-anisms, both of which involve an initial stage of texture grabbing (spatiotemporal filtering, followed by fullwave rectification). The second-order motion system then applies a Reichardt detector (or equiva-lently, motion energy analysis) directly to this signal and arrives at the reversed-phi direction. The third-order system marks the location of features that differ from the background (the figure) in a salience map and computes motion in the forward direction from the changes in the spatiotemporal location of these marks. The second-order system’s report of reversed movement dominates in peripheral vision and in central vision at higher temporal frequencies, because it has better spatial and temporal resolu-tion than the third-order system, which has a cutoff frequency of 3–4 Hz (Lu & Sperling, 1995b). In cen-tral vision, below 3–4 Hz, the third-order system’s report of resolvable forward movement of something salient (the figure) dominates the second-order system’s report of texture contrast movement.  相似文献   

16.
Timing in the visual field is regarded as an additive conjoint measurement structure, psychophysical extension of stimulus path as an extensive measurement structure. These two sets of postulates lead to the derivation of an essential maximum for velocity perception. Apparent phi motion perception under strictly stationary stimulus conditions is described as relative motion of the first stimulus' psychophysical mapping with respect to a moving perceptual subsystem. The essential maximum of velocity modifies the relative motion postulate: relativistic dilatation of seen length of path is predicted. Testable properties of the model, comparison with experimental data from "real" motion and apparent phi motion perception are discussed.  相似文献   

17.
Oyama T  Simizu M  Tozawa J 《Perception》1999,28(6):739-748
Effects of similarity in colour, luminance, size, and shape on apparent motion and perceptual grouping were examined in part 1 in two parallel experiments on the same seven subjects. In both experiments, the effect of similarity was compared with that of proximity in competitive, bistable stimulus situations. A combination of a larger horizontal separation between the homogeneous stimulus elements and a smaller constant vertical separation between heterogeneous stimulus elements produced two kinds of apparent motion (or perceptual grouping) with equal probabilities. Such matched separations between homogeneous stimulus elements were obtained by the double staircase method in various stimulus conditions. In both experiments on apparent motion and perceptual grouping matched separation was found to increase as the difference between the heterogeneous stimulus elements increased. High correlations (0.71 to 0.94) of matched separations were found between apparent motion and perceptual grouping in four stimulus series: colour, luminance, size, and shape. Six of the seven subjects were also tested in part 2. Here, the effects of differences were found to work additively across different perceptual attributes in both phenomena, when multiple differences were combined in heterogeneous elements. The experimental results are discussed from the point of view that apparent motion is an example of perceptual constancy.  相似文献   

18.
Three experiments investigating the basis of induced motion are reported. The proposition that induced motion is based on the visual capture of eye-position information and is therefore a subject-relative, rather than object-relative, motion was explored in the first experiment. Observers made saccades to an invisible auditory stimulus following fixation on a stationary stimulus in which motion was induced. In the remaining two experiments, the question of whether perceived induced motion produces a straight ahead shift was explored. The critical eye movement was directed to apparent straight ahead. Because these saccades partially compensated for the apparent displacement of the induction stimulus, and saccades to the auditory stimulus did not, we conclude that induced motion is not based on oculomotor visual capture. Rather, it is accompanied by a shift in the judged direction of straight ahead, an instance of the straight ahead shift. The results support an object-relative theory of induced motion.  相似文献   

19.
It has been known for over 30 years that motion information alone is sufficient to yield a vivid impression of three-dimensional object structure. For example, a computer simulation of a transparent sphere, the surface of which is randomly speckled with dots, gives no impression of depth when presented as a stationary pattern on a visual display. As soon as the sphere is made to rotate in a series of discrete steps or frames, its 3-D structure becomes apparent. Three experiments are described which use this stimulus, and find that depth perception in these conditions depends crucially on the spatial and temporal properties of the display:

1. Depth is seen reliably only for between-frame rotations of less than 15°, using two-frame and four-frame sequences.

2. Parametric observations using a wide range of frame durations and inter-frame intervals reveal that depth is seen only for inter-frame intervals below 80 msec and is optimal when the stimulus can be sampled at intervals of about 40-60 msec.

3. Monoptic presentation of two frames of the stimulus is sufficient to yield depth, but the impression is destroyed by dichoptic presentation.

These data are in close agreement with the observed limits of direction perception in experiments using “short-range” stimuli. It is concluded that depth perception in the motion display used in these experiments depends on the outputs of low-level or “short-range” motion detectors.  相似文献   

20.
Learning to recognize objects appears to depend critically on extended observation of appearance over time. Specifically, temporal association between dissimilar views of an object has been proposed as a tool for learning invariant representations for recognition. We examined heretofore untested aspects of the temporal association hypothesis using a familiar dynamic object, the human body. Specifically, we examined the role of appearance prediction (temporal asymmetry) in temporal association. In our task, observers performed a change detection task using upright and inverted images of a walking body either with or without previous exposure to a motion stimulus depicting an upright walker. Observers who were exposed to the dynamic stimulus were further divided into two groups dependent on whether the observed motion depicted forward or backward walking. We find that the effect of the motion stimulus on sensitivity is highly dependent on whether the observed motion is consistent with past experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号