首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The social cognition and perception-action literatures are largely separate, both conceptually and empirically. However, both areas of research emphasize infants' emerging abilities to use available information--social and perceptual information, respectively--for making decisions about action. Borrowing methods from both research traditions, this study examined whether 18-month-old infants incorporate both social and perceptual information in their motor decisions. The infants' task was to determine whether to walk down slopes of varying risk levels as their mothers encouraged or discouraged walking. First, a psychophysical procedure was used to determine slopes that were safe, borderline, and risky for individual infants. Next, during a series of test trials, infants received mothers' advice about whether to walk. Infants used social information selectively: They ignored encouraging advice to walk down risky slopes and discouraging advice to avoid safe slopes, but they deferred to mothers' advice at borderline slopes. Findings indicate that 18-month-old infants correctly weigh competing sources of information when making decisions about motor action and that they rely on social information only when perceptual information is inadequate or uncertain.  相似文献   

2.
Humans readily entrain their movements to a beat, including matching their gait to a prescribed tempo. Rhythmic auditory cueing tasks have been used to enhance stepping behavior in a variety of clinical populations. However, there is limited understanding of how temporal accuracy of gait changes over practice in healthy young adults. In this study, we examined how inter-step interval and cadence deviated from slow, medium, and fast tempos across steps within trials, across trials within blocks, and across two blocks that bookended a period of practice of walking to each tempo. Participants were accurate in matching the tempo at the slow and medium tempos, while they tended to lag behind the beat at the fast tempo. We also found that participants showed no substantial improvement across steps and trials, nor across blocks, suggesting that participants had a robust ability to entrain their gait to the specified metronome tempo. However, we did find that participants habituated to the prescribed tempo, showing self-paced gait that was faster than self-paced baseline gait after the fast tempo, and slower than self-paced baseline gait after the slow tempo. These findings might represent an “after-effect” in the temporal domain, akin to after-effects consistently shown in other sensorimotor tasks. This knowledge of how healthy participants entrain their gait to temporal cues may have important implications in understanding how clinical populations acquire and modify their gait in rhythmic auditory cueing tasks.  相似文献   

3.
During walking our balance is maintained by muscle action. In part these muscle actions automatically respond to the imbalance. This paper considers responses to balance perturbations in muscles around the ankle, peroneus longus (PL), tibialis anterior (TA) and soleus (SO). It is investigated if their action is related to previously observed balance mechanisms: the ‘braking reaction’ and the mediolateral ankle strategy.Subjects walked on a treadmill and received pushes to the left and pulls to the right in various phases of the gait cycle. Muscle actions were divided into medium latency R1 (100–150 ms), long latency R2 (170–250 ms), and late action R3 (270–350 ms). Short latency responses, before 100 ms, were not observed but later responses were prominent. With inward perturbations (e.g. pushes to the left shortly before or during stance of the right foot) responses in RPL were seen. The forward roll-over of the CoP was briefly stalled in mid stance, so that the heel was not lifted. Stance was shortened. With outward perturbations, pushes to the left shortly before or during stance of the left foot, responses in all three muscles, LTA, LSO, and LPL were seen. Our interpretation is that these muscle activations induce a ‘braking reaction’ but could also contribute to the ‘mediolateral ankle strategy’. The resultant balance correction is small but fast, and so diminishes the need for later corrections by the stepping strategy.  相似文献   

4.
The stability of a system affects how it will handle a perturbation: The system may compensate for the perturbation or not. This study examined how 14-month-old infants—notoriously unstable walkers—and adults cope with a perturbation to walking. We attached a platform to one of participants’ shoes, forcing them to walk with one elongated leg. At first, the platform shoe caused both age groups to slow down and limp, and caused infants to misstep and fall. But after a few trials, infants altered their gait to compensate for the platform shoe whereas adults did not; infants recovered symmetrical gait whereas adults continued to limp. Apparently, adult walking was stable enough to cope with the perturbation, but infants risked falling if they did not compensate. Compensation depends on the interplay of multiple factors: The availability of a compensatory response, the cost of compensation, and the stability of the system being perturbed.  相似文献   

5.
For adults, prior information about an individual's likely goals, preferences or dispositions plays a powerful role in interpreting ambiguous behavior and predicting and interpreting behavior in novel contexts. Across two studies, we investigated whether 10‐month‐old infants’ ability to identify the goal of an ambiguous action sequence was facilitated by seeing prior instances in which the actor directly pursued and obtained her goal, and whether infants could use this prior information to understand the actor's behavior in a new context. Experiment 1 demonstrated that the goal preview impacted infants’ subsequent action understanding, but only if the preview was delivered in the same room as the subsequent action sequence. Experiment 2 demonstrated that infants’ failure to transfer prior goal information across situations arose from a change in the room per se and not other features of the task. Our results suggest that infants may use their understanding of simple actions as a leverage point for understanding novel or ambiguous actions, but that their ability to do so is limited to certain types of contextual changes.  相似文献   

6.
Infants’ understanding of the intentional nature of human action develops gradually across the first year of life. A key question is what mechanisms drive changes in this foundational social‐cognitive ability. The current studies explored the hypothesis that triadic interactions in which infants coordinate attention between a social partner and an object of mutual interest promote infants’ developing understanding of others as intentional agents. Infants’ spontaneous tendency to participate in triadic engagement was assessed in a semi‐structured play session with a researcher. Intentional action understanding was assessed by evaluating infants’ ability to visually predict the goal of an intentional reaching action. Study 1 (N = 88) revealed that 8‐ to 9‐month‐olds who displayed more bouts of triadic engagement showed better concurrent reasoning about the goal of an intentional reaching action. Study 2 (N = 114) confirmed these findings using a longitudinal design and demonstrated that infants who displayed more bouts of triadic engagement at 6–7 months were better at prospectively reasoning about the goal of an intentional reaching action 3 months later. Cross‐lagged path analyses revealed that intentional action understanding at 6–7 months did not predict later triadic engagement, suggesting that early triadic engagement supports later intentional action processing and not the other way around. Finally, evidence from both studies revealed the unique contribution of triadic over dyadic forms of engagement. These results highlight the importance of social interaction as a developmental mechanism and suggest that infants enrich their understanding of intentionality through triadic interactions with social partners.  相似文献   

7.
The ability to navigate without vision towards a previously seen target has been extensively studied, but its reliability over time has yet to be established. Our aims were to determine distance and direction errors made during blind navigation across four different directions involving three different gait patterns (stepping forward, stepping sideway, and stepping backward), and to establish the test-retest reproducibility of these errors. Twenty young healthy adults participated in two testing sessions separated by 7 days. They were shown targets located, respectively, 8 m ahead, 8 m behind, and 8 m to their right and left. With vision occluded by opaque goggles, they walked forward (target ahead), backward (target behind), and sideway (right and left targets) until they perceived to be on the target. Subjects were not provided with feedback about their performance. Walked distance, angular deviation, and body rotation were measured. The mean estimated distance error was similar across the four walking directions and ranged from 16 to 80 cm with respect to the 8 m target. In contrast, direction errors were significantly larger during sideway navigation (walking in the frontal plane: leftward, 10 degrees +/- 15 degrees deviation; rightward, 18 degrees +/- 13 degrees) than during forward and backward navigation (walking in the sagittal plane). In general, distance and direction errors were only moderately reproducible between the two sessions [intraclass correlation coefficients (ICCs) ranging from 0.682 to 0.705]. Among the four directions, rightward navigation showed the best reproducibility with ICCs ranging from 0.607 to 0.726, and backward navigation had the worst reliability with ICCs ranging from 0.094 to 0.554. These findings indicate that errors associated with blind navigation across different walking directions and involving different gait patterns are only moderately to poorly reproducible on repeated testing, especially for walking backward. The biomechanical constraints and increased cognitive loading imposed by changing the walking pattern to backward stepping may underlie the poor performance in this direction.  相似文献   

8.
Researchers can study complex developmental phenomena with all the inherent noise and complexity or simplify behaviors to hone in on the essential aspects of a phenomenon. We used the development of walking as a model system to compare the costs and benefits of simplifying a complex, noisy behavior. Traditionally, researchers simplify infant walking by recording gait measures as infants take continuous, forward steps along straight paths. Here, we compared the traditional straight‐path task with spontaneous walking during 20 minutes of free play in 97 infants (10.75–19.99 months of age). We recorded infants’ footfalls on an instrumented floor to calculate gait measures in the straight‐path and free‐play tasks. In addition, we scored videos for other critical aspects of spontaneous walking—steps per bout, shape of walking path, and step direction. Studying infant walking during free play incurred no cost compared with the straight‐path task, but considerable benefits. Straight‐path gait was highly correlated with spontaneous gait and both sets of measures improved with walking age, validating use of the straight‐path task as an index of development. However, a large proportion of free‐play bouts were too short to permit standard gait measures, and most bouts were curved with omnidirectional steps. The high prevalence of these “non‐canonical” bouts was constant over development. We propose that a focus on spontaneous walking, the phenomenon we ostensibly wish to explain, yields important insights into the problems infants solve while learning to walk. Other areas of developmental research may also benefit from retaining the complexity of complex phenomena.  相似文献   

9.
Abstract

Patients who require neurological rehabilitation often do not comply with conventional programs because they find the therapy uninteresting. As a result, specialized interactive video games have been designed to be more enjoyable than conventional therapy (CT) tasks. This study aimed to assess the trunk control and gait ability of patients with chronic stroke after participation in driving-based interactive video games (DBIVG). Participants included 24 chronic stroke patients allocated to an experimental group (n?=?13, CT?+?DBIVG) or a control group (n?=?11, CT?+?treadmill walking training). Both groups received CT five days/week; the experimental and control groups participated in DBIVG and treadmill walking training, respectively, three days/week for four weeks. The primary outcome of trunk control was measured by the trunk impairment scale (TISall) and TIS subscales, including static sitting balance (TISssb), dynamic sitting balance (TISdsb), and trunk co-ordination (TISco). Gait ability was measured by the dynamic gait index (DGI), timed walking test (TWT), and time up and go test (TUGT). Both groups demonstrated significant improvements in TISall, TISdsb, and TUGT results. The experimental group showed significantly greater improvement in TISssb, TISco, and DGI than the control group. Our findings indicate that DBIVG can improve trunk control and gait ability in patients with chronic stroke.  相似文献   

10.
In light of cross‐cultural and experimental research highlighting effects of childrearing practices on infant motor skill, we asked whether wearing diapers, a seemingly innocuous childrearing practice, affects infant walking. Diapers introduce bulk between the legs, potentially exacerbating infants’ poor balance and wide stance. We show that walking is adversely affected by old‐fashioned cloth diapers, and that even modern disposable diapers – habitually worn by most infants in the sample – incur a cost relative to walking naked. Infants displayed less mature gait patterns and more missteps and falls while wearing diapers. Thus, infants’ own diapers constitute an ongoing biomechanical perturbation while learning to walk. Furthermore, shifts in diapering practices may have contributed to historical and cross‐cultural differences in infant walking.  相似文献   

11.
Walking to a pacing stimulus has proven useful in motor rehabilitation, and it has been suggested that spontaneous synchronization could be preferable to intentional synchronization. But it is still unclear if the paced walking effect can occur spontaneously, or if intentionality plays a role. The aim of this work is to analyze the effect of sound pacing on gait with and without instruction to synchronize, and with different rhythmic auditory cues, while walking on a treadmill.Firstly, the baseline step frequency while walking on a treadmill was determined for all participants, followed by experimental sessions with both music and footstep sound cues. Participants were split into two groups, with one being instructed to synchronize their gait to the auditory stimuli, and the other being simply told to walk. Individual auditory cues were generated for each participant: for each trial, cues were provided at the participant’s baseline walking frequency, at 5% and 10% above baseline, and at 5% and 10% below baseline.This study’s major finding was the role of intention on synchronization, given that only the instructed group synchronized their gait with the auditory cues. No differences were found between the effects of step or music stimuli on step frequency.In conclusion, without intention or cues that direct the individual’s attention, spontaneous gait synchronization does not occur during treadmill walking.  相似文献   

12.
When teaching infants new actions, parents tend to modify their movements. Infants prefer these infant-directed actions (IDAs) over adult-directed actions and learn well from them. Yet, it remains unclear how parents’ action modulations capture infants’ attention. Typically, making movements larger than usual is thought to draw attention. Recent findings, however, suggest that parents might exploit movement variability to highlight actions. We hypothesized that variability in movement amplitude rather than higher amplitude is capturing infants’ attention during IDAs. Using EEG, we measured 15-month-olds’ brain activity while they were observing action demonstrations with normal, high, or variable amplitude movements. Infants’ theta power (4–5 Hz) in fronto-central channels was compared between conditions. Frontal theta was significantly higher, indicating stronger attentional engagement, in the variable compared to the other conditions. Computational modelling showed that infants’ frontal theta power was predicted best by how surprising each movement was. Thus, surprise induced by variability in movements rather than large movements alone engages infants’ attention during IDAs. Infants with higher theta power for variable movements were more likely to perform actions successfully and to explore objects novel in the context of the given goal. This highlights the brain mechanisms by which IDAs enhance infants’ attention, learning, and exploration.  相似文献   

13.
Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58–1.91 m) and body mass (49–98 kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking.  相似文献   

14.
To examine patterns of strategy choice and discovery during problem‐solving of a novel locomotor task, 13.5‐ and 18‐month‐old infants were placed at the top of a staircase and encouraged to descend. Spontaneous stair descent strategy choices were documented step by step and trial by trial to provide a microgenetic account of problem‐solving in action. Younger infants tended to begin each trial walking, were more likely to choose walking with each successive step, and were more likely to lose their balance and have to be rescued by an experimenter. Conversely, older infants tended to begin each trial scooting, were more likely to choose scooting with each successive step, and were more likely to use a handrail to augment balance on stairs. Documenting problem‐solving microgenetically across age groups revealed striking similarities between younger infants' strategy development and older children's behaviour on more traditionally cognitive tasks, including using alternative strategies, mapping prior experiences with strategies to a novel task, and strengthening new strategies. As cognitive resources are taxed during a challenging task, resources available for weighing alternatives or inhibiting a well‐used strategy are reduced. With increased motor experience, infants can more easily consider alternative strategies and maintain those solutions over the course of the trial.  相似文献   

15.
A virtual reality (VR)-based locomotor training system has been developed for gait rehabilitation post-stroke. The system consists of a self-paced treadmill mounted onto a 6-degrees-of-freedom motion platform. Virtual environments (VEs) that are synchronized with the speed of the treadmill and the motions of the platform are rear-projected onto a screen in front of the walking subject. A feasibility study was conducted to test the capability of two stroke patients and one healthy control to be trained with the system. Three VE scenarios (corridor walking, street crossing, and park stroll) were woven into a gait-training program that provided three levels of complexity (walking speed, slopes, collision avoidances), progression criteria (number of successful trials) and knowledge of results. Results show that, with practice, patients can effectively increase their gait speed as demanded by the task and adapt their gait with respect to the change in physical terrain. However, successful completion of tasks requiring adaptation to increasing demands related to speed and physical terrains does not necessarily predict the patient's ability to anticipate and avoid collision with obstacles during walking. This feasibility study demonstrates that persons with stroke are able to adapt to this novel VR system and be immersed in the VEs for gait training.  相似文献   

16.
Understanding gait adaptation is essential for rehabilitation, and visual feedback can be used during gait rehabilitation to develop effective gait training. We have previously shown that subjects can adapt spatial aspects of walking to an implicitly imposed distortion of visual feedback of step length. To further investigate the storage benefit of an implicit process engaged in visual feedback distortion, we compared the robustness of aftereffects acquired by visual feedback distortion, versus split-belt treadmill walking. For the visual distortion trial, we implicitly distorted the visual representation of subjects’ gait symmetry, whereas for the split-belt trial, the speed ratio of the two belts was gradually adjusted without visual feedback. After adaptation, the visual feedback or the split-belt perturbation was removed while subjects continued walking, and aftereffects of preserved asymmetric pattern were assessed. We found that subjects trained with visual distortion trial retained aftereffects longest. In response to the larger speed ratio of split-belt walking, the subjects showed an increase in the size of aftereffects compared to the smaller speed ratio, but it steeply decreased over time in all the speed ratios tested. In contrast, the visual distortion group showed much slower decreasing rate of aftereffects, which was evidence of longer storage of an adapted gait pattern. Visual distortion adaptation may involve the interaction and integration of the change in motor strategy and implicit process in sensorimotor adaptation. Although it should be clarified more clearly through further studies, the findings of this study suggest that gait control employs distinct adaptive processes during the visual distortion and split-belt walking and also the level of reliance of an implicit process may be greater in the visual distortion adaptation than the split-belt walking adaptation.  相似文献   

17.
This article describes developmental changes in gait velocity and relates these changes to gait parameters that index postural stability (step width and lateral acceleration) and two components of velocity (cadence and step length).

Five children were observed longitudinally over a 2-year period after onset of independent walking. Their range of speed increased threefold in the first 6 months of independent walking and then remained constant. In contrast, step width decreased approximately twofold. Whereas in adults, cadence and step length contribute approximately equally to speed, when infants first begin to walk independently, increase in velocity is due mostly to increased step length. After 5 months of independent walking, the pattern reverses, and increase in velocity is due primarly to increased cadence. The pattern remains constant over the next 18 months. From a developmental point of view, the data lead us to interpret early walking (the first 5 months) as a process of integration of postural constraints into the dynamic necessities of gait movement. A second phase, beginning after 4 to 5 months of independent walking, is considered to be a tuning phase characterized by a more precise adjustment of the gait parameters.  相似文献   

18.
BackgroundPeripheral vision often deteriorates with age, disrupting our ability to maintain normal locomotion. Laboratory based studies have shown that lower visual field loss, in particular, is associated with changes in gaze and gait behaviour whilst walking and this, in turn, increases the risk of falling in the elderly. Separately, gaze and gait behaviours change and fall risk increases when walking over complex surfaces. It seems probable, but has not yet been established, that these challenges to stability interact.Research questionHow does loss of the lower visual field affect gaze and gait behaviour whilst walking on a variety of complex surfaces outside of the laboratory? Specifically, is there a synergistic interaction between the effects on behaviour of blocking the lower visual field and increased surface complexity?MethodsWe compared how full vision versus simulated lower visual field loss affected a diverse range of behavioural measures (head pitch angle, eye angle, muscle coactivation, gait speed and walking smoothness as measured by harmonic ratios) in young participants. Participants walked over a range of surfaces of different complexity, including pavements, grass, steps and pebbles.ResultsIn both full vision and blocked lower visual field conditions, surface complexity influenced gaze and gait behaviour. For example, more complex surfaces were shown to be associated with lowered head pitch angles, increased leg muscle coactivation, reduced gait speed and decreased walking smoothness. Relative to full vision, blocking the lower visual field caused a lowering of head pitch, especially for more complex surfaces. However, crucially, muscle coactivation, gait speed and walking smoothness did not show a significant change between full vision and blocked lower visual field conditions. Finally, head pitch angle, muscle coactivation, gait speed and walking smoothness were all correlated highly with each other.SignificanceOur study showed that blocking the lower visual field did not significantly change muscle coactivation, gait speed or walking smoothness. This suggests that young people cope well when walking with a blocked lower visual field, making minimal behavioural changes. Surface complexity had a greater effect on gaze and gait behaviour than blocking the lower visual field. Finally, head pitch angle was the only measure that showed a significant synergistic interaction between surface complexity and blocking the lower visual field. Together our results indicate that, first, a range of changes occur across the body when people walk over more complex surfaces and, second, that a relatively simple behavioural change (to gaze) suffices to maintain normal gait when the lower visual field is blocked, even in more challenging environments. Future research should assess whether young people cope as effectively when several impairments are simulated, representative of the comorbidities found with age.  相似文献   

19.
The patellofemoral (PF) joint is susceptible to many pathologies resulting from acute injury, chronic disease and complications following surgical treatment of the knee. The objectives of this study were to describe case series measurements of patellar motion in healthy older adults as they performed three gait activities, determine patellar tendon angle and moment arm, and show if these quantities were activity dependent. A stereo radiography system was utilized to obtain the 3D PF kinematics of seventeen healthy people over 55 years of age (8F/9M, 66 ± 7.9 years old, 75.7 ± 20.5 kg) as they performed level walking, a step down, and a pivot turn. For a similar portion of the gait cycle, patellar flexion (6.2° ± 5.8) and average range of motion (ROM) (11.0° ± 5.9°) for walking with a step down was greater compared to the other gait activities (gait ROM 6.9° ± 4.3°, pivot ROM 5.7° ± 3.3°), while the average range of motion for patella tilt was greater during walking with a pivot turn (8.6° ± 3.9°). However, each subject displayed distinct PF kinematic trends during all activities with a few notable exceptions. Importantly, the knee extensor mechanism characteristics of patellar tendon angle and moment arm showed considerable variation across subjects but were largely unaltered by changing activities. The variation between subjects and the different behavior of the patella during the step down and pivot emphasized the need for analysis of a range of activities to reveal individual response to pathology and treatment in patellar maltracking and osteoarthritis.  相似文献   

20.
The authors studied the development of postural adjustments associated with the initiation of gait in children by using kinematic and electromyographic (EMG) analysis. Participants (N = 28) included infants with 1-4 and 9-17 months of walking experience, children 4-5 years of age, and adults. Anticipatory postural adjustments (APA) were present in the youngest age groups, including a clear anticipatory lateral tilt of the pelvis and the stance leg, which enabled the child to unload the opposite leg shortly before its swing phase. An anticipatory activation of the hip abductor of the leg in stance phase prior to heel-off was found, suggesting pelvis stabilization. APA did not appear consistently until 4-5 years of age. A decrease in segmental oscillations occurred across the ages, indicating better control of intersegmental coordination in the frontal and sagittal planes during the postural phase of gait initiation. Young walkers presented APA involving movements of both the upper and the lower parts of the body, whereas, like adults, 4- to 5-year-olds were able to laterally shift only the pelvis and the stance leg. The oldest children and the adults also showed lower activation levels of hip and knee muscles but higher activation at the ankle level. Those kinematic and EMG results taken together suggest a clear developmental sequence from an en bloc operation of the body through an articulated operation with maturation, walking experience, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号