首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Responses are faster with spatial S-R correspondence than with noncorrespondence (spatial compatibility effect), even if stimulus location is irrelevant (Simon effect). In two experiments, we sought to determine whether stimuli located above and below a fixation point are coded as left and right (and thus affect the selection of left and right responses) if the visual context suggests such a coding. So, stimuli appeared on the left or right eye of a face’s image that was tilted by 90° to one side or the other (Experiment 1) or varied between upright and 45° or 90° tilting (Experiment 2). Whether stimulus location was relevant (Experiment 1) or not (Experiment 2), responses were faster with correspondence of (face-based) stimulus location and (egocentrically defined) response location, even if stimulus and response locations varied on physically orthogonal dimensions. This suggests that object-based spatial stimulus codes are formed automatically and thus influence the speed of response selection.  相似文献   

2.
Experiments by Umiltà and Liotti (1987) and Lamberts, Tavernier, & d'Ydewalle (1992) examined the Simon effect (an influence of irrelevant stimulus location on reaction time) as a function of multiple frames of reference. The Simon effect was absent for all reference frames in the former experiment, leading Stoffer (1991) to propose that a spatial code is formed only if the last step in directing attention to the imperative stimulus is a lateral shift. However, the Simon effect was evident for all frames in the latter experiment. Hommel (1994) proposed that the multiple spatial codes implied by Lamberts et al.'s findings were also activated in Umiltà and Liotti's experiment but had decayed by the time the relevant stimulus information had been identified. Experiments 1, 2, and 3 examined these accounts of attention shifting, multiple codes, and temporal overlap for variations of the Simon task in which the stimulus could occur in one of either eight or four possible stimulus locations. Three stimulus sets that differed in ease of discriminability were used in each experiment. Experiments 1 and 2 were replications and extensions of those of Lamberts et al. and Umiltá and Liotti, respectively. In both experiments, two boxes, with a stimulus inside of one, appeared simultaneously, and the subject was to respond to the identity of the stimulus. Experiment 3 used a procedure in which the four stimulus locations were demarcated by three vertical lines. Two of the three experiments showed Simon effects with respect to multiple frames of reference, and the magnitude of these effects was a decreasing function of the difficulty of stimulus discriminability. Spatial compatibility proper was examined in Experiment 4 using the same layout as Experiment 3. In this case, only the relevant frame of reference was coded. On the whole, the results indicate that multiple codes are formed, but not automatically, and that those codes decay when irrelevant.  相似文献   

3.
Summary Choice-reaction time is known to depend on the spatial correspondence of stimulus and response, even if the stimulus location is irrelevant to the task (Simon effect). An experiment investigated whether this effect depends on stimulus complexity — i. e., on whether properties of the stimulus render stimulus discrimination easy or difficult. It was hypothesized that high demands on discrimination slow down the processing of stimulus identity in relation to location, so that the facilitating or conflicting location code has more time to decay, thus losing impact on response selection. In fact, the results revealed an effect of irrelevant spatial S-R correspondence with easy, but not with difficult, stimulus discrimination. This finding resolves an apparent contradiction between the results of several previous experiments on the Simon effect.The other central argument rests on findings of Stoffer (1991) obtained with a single frame. These, however, have recently been challenged by Hommel (1993 b).  相似文献   

4.
The above-right/below-left mapping advantage with vertical stimuli and horizontal responses is known as the orthogonal stimulus–response compatibility (SRC) effect. We investigated whether the orthogonal SRC effect emerges with irrelevant stimulus dimensions. In Experiment 1, participants responded with a right or left key press to the colour of the stimulus presented above or below the fixation. We observed an above-right/below-left advantage (orthogonal Simon effect). In Experiment 2, we manipulated the polarity in the response dimension by varying the horizontal location of the response set. The orthogonal Simon effect decreased and even reversed as the left response code became more positive. This result provides evidence for the automatic activation of the positive and negative response codes by the corresponding positive and negative stimulus codes. These findings extended the orthogonal SRC effect based on coding asymmetry to an irrelevant stimulus dimension.  相似文献   

5.
The above-right/below-left mapping advantage with vertical stimuli and horizontal responses is known as the orthogonal stimulus-response compatibility (SRC) effect. We investigated whether the orthogonal SRC effect emerges with irrelevant stimulus dimensions. In Experiment 1, participants responded with a right or left key press to the colour of the stimulus presented above or below the fixation. We observed an above-right/below-left advantage (orthogonal Simon effect). In Experiment 2, we manipulated the polarity in the response dimension by varying the horizontal location of the response set. The orthogonal Simon effect decreased and even reversed as the left response code became more positive. This result provides evidence for the automatic activation of the positive and negative response codes by the corresponding positive and negative stimulus codes. These findings extended the orthogonal SRC effect based on coding asymmetry to an irrelevant stimulus dimension.  相似文献   

6.
This study deals with the problem of whether the processing of irrelevant location information in Simon-like tasks is triggered exogenously or endogenously. In Experiment 1, the primary task required one to press, as fast as possible, a left-hand-side key or a right-hand-side key (R1) to the pitch of a tone that was presented binaurally (S1). The secondary task required identifying, without time constraints, a visual stimulus (S2) that appeared randomly to the left or right of screen center. Results showed that there was a correspondence (i.e., a cross-task Simon effect) between the location of R1 and the location of S2 when S2 was presented alone. The cross-task Simon effect became much smaller (and in-significant) when a noise stimulus was presented contralateral to S2. Experiment 2 was similar to Experiment 1, except that S2 appeared unpredictably in only one-third of the trials. Results of Experiment 2 closely replicated those of Experiment 1: the cross-task Simon effect was much greater when S2 was presented alone. Experiment 3 differed from Experiment 1 because S2 had to be processed in only one-third of the trials, in which its identity was to be reported. In the remaining two-thirds of the trials, participants could ignore S2. Results confirmed that the cross-task Simon effect was much greater when S2 was presented alone. In contrast, it did not matter whether S2 had to be processed or not. In conclusion, the present study supports the hypothesis that the task-irrelevant spatial code of the stimulus is formed automatically, likely through an exogenously triggered selection. The role of endogenously initiated selection, if any, is much less important.  相似文献   

7.
For two stimulus locations mapped to two keypresses, reaction time is shorter when the mapping is compatible than when it is not (the stimulus–response compatibility, SRC, effect). A similar result, called the Simon effect, occurs when stimulus location is irrelevant, and colour is relevant. When compatibly mapped trials are intermixed with incompatibly mapped trials or Simon task trials, the compatibility effect is eliminated, and the Simon effect is influenced by the location mapping. In five experiments, we examined whether similar mixing effects occur when the two spatial mappings or location-relevant and location-irrelevant tasks use distinct keypresses on the left and right hands. Mixing had considerably less influence on the SRC and Simon effects than it does when the intermixed trial types or tasks share the same responses, even though response time was lengthened to a similar extent. Mixing two tasks for which stimulus location was irrelevant yielded no within-task Simon effect, but the effect was also absent when four stimuli were assigned to two responses on a single hand. The relative lack of influence of mixing on the SRC and Simon effects when the tasks have unique responses implies that suppression of direct activation of the corresponding response occurs primarily when the tasks share responses.  相似文献   

8.
The Simon effect, better performance when irrelevant stimulus location corresponds with the response location than when it does not, typically is larger for older than younger adults. However, Simon and Pouraghabagher [Simon, R. J., & Pouraghabagher, A. R. (1978). The effect of aging on the stages of processing in a choice reaction time task. Journal of Gerontology, 33, 553-561] found no age difference using an accessory-stimulus Simon task in which the relevant dimension was the color of a visual stimulus and the irrelevant dimension the location of a tone. Experiment 1 confirmed that older adults show a larger Simon effect than younger adults for the visual Simon task and that this age-related deficit is reduced or eliminated for the auditory-accessory task. Experiment 2 provided evidence suggesting that a small part of the age-related deficit in the visual Simon task is due to having to code the location of the relevant stimulus, but Experiment 3 showed that the majority of the deficit is due to the relevant and irrelevant information being conveyed by the same stimulus. Reaction-time distribution analyses show similar functions for younger and older adults, suggesting that the time course of activation is similar for both age groups.  相似文献   

9.
On spatial response code activation in a Simon task   总被引:2,自引:0,他引:2  
Ivanoff J 《Acta psychologica》2003,112(2):157-179
The Simon effect refers to the performance advantage for trials where the task-irrelevant location of a target spatially corresponds with the location of the response. It is thought that the irrelevant spatial code of the target facilitates responding by automatically pre-activating the spatially corresponding response code. This spatial code is thought to passively decay shortly after its activation. In this investigation, the response was selected according to the identity of a central cue. The selected response was executed or withheld depending the identity (Experiment 1) or the presence (Experiment 2) of the target. Varying the stimulus-onset asynchrony (SOA), between the central response cue and the peripheral target, allowed for a time-course analysis of the Simon effect. The results of two experiments provided no indication that the activation level of the irrelevant spatial code decayed while the relevant response was prepared. Although reaction times increased as the SOA decreased, the Simon effect was additive with SOA, suggesting that the automatic activation of the task-irrelevant spatial code was delayed until the task-relevant response code was mostly prepared, perhaps due to the capacity limitations of response selection.  相似文献   

10.
Summary As is indicated by the Simon effect, choice reactions can be carried out faster when the response corresponds spatially to the stimulus, even if the stimulus location is irrelevant to the task. In Experiments 1–4 the relationships between the Simon effect and stimulus eccentricity, signal quality, and signal-background contrast are investigated. The Simon effect was found to interact with all of these factors, at least when manipulated blockwise. These results are at odds with previous results and are difficult to interpret from an additive-factor-method view. An alternative interpretation is suggested that attributes the results to the temporal relationship between the processing of the relevant stimulus information and stimulus location. The assumption is that a decrease in the Simon effect is caused by every experimental manipulation that markedly increases the temporal distance between the coding of the relevant stimulus information and that of the irrelevant stimulus location. This assumption was tested in Experiment 5 in a more direct way. The stimuli were built up on a screen over time, so that the temporal distance between the presence of location and identity information could be controlled experimentally. The results provide further support for a temporal-delay interpretation of interactions between irrelevant stimulus-response correspondence and factors that affect early stages of information processing.  相似文献   

11.
 We investigated the attention-shift hypothesis of the Simon effect by analysing the effect of repeating relevant colour or irrelevant location of the stimulus in four serial reaction time tasks. In Experiment 1 with short response-stimulus intervals (RSI), we assume that there is no time to engage attention at the fixation cross before the onset of a new stimulus. In agreement with the hypothesis, Experiment 1 reveals no Simon effect when the stimulus location is repeated. In Experiment 2 with long RSI, we observe a Simon effect for location repetitions and alternations. In Experiment 3 with long RSI, we hinder the disengagement of attention by displaying the stimulus after response execution. As expected, the Simon effect is reduced for location repetitions. In Experiment 4 with stimuli additionally presented at the fixation cross, responses are faster if the attention shift towards the centrally presented stimulus corresponds with the location of the required response. Additionally, we argue that binding of the stimulus features into an object or event file better explains the so-called blocking of the automatic response-priming route after a noncorresponding trial. Received: 2 February 2000 / Accepted: 10 November 2000  相似文献   

12.
Three experiments using a serial four-choice reaction-time (RT) task explored the interaction of sequence learning and stimulus-based response conflict. In Experiment 1, the spatial stimulus-response (S-R) mapping was manipulated between participants. Incompatible S-R mappings produced much higher RTs than the compatible mapping, but sequence learning decreased this S-R compatibility effect. In Experiment 2, the spatial stimulus feature was made task-irrelevant by assigning responses to symbols that were presented at unpredictable locations. The data indicated a Simon effect (i.e., increased RT when irrelevant stimulus location is spatially incompatible with response location) that was reduced by sequence learning. However, this effect was observed only in participants who developed an explicit sequence representation. Experiment 3 replicated this learning-based modulation of the Simon effect using explicit sequence-learning instructions. Taken together, the data support the notion that explicit sequence learning can lead to motor 'chunking', so that pre-planned response sequences are shielded from conflicting stimulus information.  相似文献   

13.
We investigated whether the Simon effect occurs for the depth dimension in a 3-dimensional display. In Experiment 1, participants executed discriminative responses to 2 stimuli, a cross and a sphere, both 3-dimensional, which were perceived to be located near or far with respect to the participant's body. The response keys were located near and far along the participant's midline. Apparent stimulus spatial location (near or far) was irrelevant to the task. Results showed a depth Simon effect, attributable to the apparent stimulus spatial location. Experiment 2 replicated Experiment 1 with a different procedure. The 2 stimuli, a triangle and a rectangle, were 2-dimensional and were perceived as being located near or far from the participant's midline; the response keys were located near and far along the participant's midline. Results showed again the depth Simon effect. Experiment 3 was a control condition in which the 2 stimuli, drawings of a lamp and of a chair, had the same size, regardless of whether they appeared to be near or far. The depth Simon effect was replicated. A distribution analysis on data of Experiment 3 showed that the Simon effect increased as reaction times became longer. In Experiment 4, the position of the 2 stimuli, a circle and a cross, varied on the horizontal (right or left) dimension, whereas the position of the 2 responses varied along the depth (near or far) dimension. No Simon effect was found.  相似文献   

14.
When left and right keypresses are made to stimuli in left and right locations, and stimulus location is irrelevant to the task, responses are typically faster when stimulus location corresponds with response location than when it does not (the Simon effect). This effect reverses when the relevant stimulus-response mapping is incompatible, with responses being slower when stimulus and response locations correspond (the Hedge and Marsh reversal). Simon et al. (Acta Psychol. 47 (1981) 63) reported an exception to the Hedge and Marsh reversal for a situation in which the relevant stimulus dimension was the color of a centered visual stimulus and the irrelevant location information was left or right tone location. In contrast, similar experiments have found a reversal of the Simon effect for tone location when relevant visual locations were mapped incompatibly to responses. We conducted four experiments to investigate this discrepancy. Both results were replicated. With an incompatible mapping, irrelevant tone location showed a small reverse Simon effect when the relevant visual dimension was physical location but not when the color of a centered stimulus or the direction in which an arrow pointed conveyed the visual location information. The reversal occurred in a more standard Hedge and Marsh task in which the irrelevant dimension was location of the colored stimulus, but only when the response keys were visibly labeled. Several of the results suggest that display-control arrangement correspondence is the primary cause of the Hedge and Marsh reversal, with logical recoding playing only a secondary role.  相似文献   

15.
Summary The Simon effect indicates that choice reactions can be performed more quickly if the response corresponds spatially to the stimulus - even when stimulus location is irrelevant to the task. Two experiments tested an intentional approach to the Simon effect that assigns a critical role to the cognitively represented action goal (i. e., the intended action effect). It was assumed that the direction of the Simon effect depends on stimulus-goal correspondence, that is, that responses are faster with spatial correspondence of stimulus and intended action effect. Experiment 1 confirmed that the direction of the Simon effect was determined by spatial correspondence of stimulus and intended action effect, the latter having been manipulated by different instructions. Experiment 2 indicated that effects of correspondences unrelated to the action goal (i. e., stimulus to hand location or to anatomical mapping of the hand), contributed additively to the resulting Simon effect. It is discussed how current approaches to the Simon effect can be elaborated to account for these results.  相似文献   

16.
We examined the conditions under which short-term associations between stimuli and responses can produce spatial Simon effects. On location-relevant trials, participants gave neutral responses (i.e., they uttered the nonsense syllable "bee" or "boo") on the basis of whether the presented word had the meaning of "left" or "right." On location-irrelevant trials, they gave the same responses on the basis of the color of left and right squares. Performance on the location-irrelevant trials was affected by the match between the irrelevant location information and the location to which the correct response was assigned on the location-relevant trials. Experiment 1 showed that this extrinsic Simon effect was found only when the words on the location-relevant trials came from two different languages. In Experiment 2, we found an extrinsic Simon effect even when participants only received instructions about how to respond on location-relevant trials but no such trials were actually presented. Our findings suggest that task demands determine whether short-term associations are mode specific or mode independent and confirm that such associations can be set up as the result of instructions only.  相似文献   

17.
Four experiments examined transfer of noncorresponding spatial stimulus-response associations to an auditory Simon task for which stimulus location was irrelevant. Experiment 1 established that, for a horizontal auditory Simon task, transfer of spatial associations occurs after 300 trials of practice with an incompatible mapping of auditory stimuli to keypress responses. Experiments 2-4 examined transfer effects within the auditory modality when the stimuli and responses were varied along vertical and horizontal dimensions. Transfer occurred when the stimuli and responses were arrayed along the same dimension in practice and transfer but not when they were arrayed along orthogonal dimensions. These findings indicate that prior task-defined associations have less influence on the auditory Simon effect than on the visual Simon effect, possibly because of the stronger tendency for an auditory stimulus to activate its corresponding response.  相似文献   

18.
Research has shown that the Simon effect is larger for targets suffering from inhibition of return (IOR). We used speed–accuracy trade-off (SAT) methodology to explore the temporal dynamics underlying this interaction. In Experiment 1, a new method for sorting the data was used to reveal a monotonic decay in the impact of task-irrelevant location information that is responsible for the Simon effect. In Experiment 2, we show that IOR delays both task-relevant identity and task-irrelevant location codes; a relatively longer delay for location than identity codes accounts for the effect of IOR on the Simon effect. When location information was made task-relevant in Experiment 3, IOR delayed the accumulation of this information by about the same amount as when location was irrelevant. The results suggest that IOR, therefore, has a greater effect on location than identity information.  相似文献   

19.
Left or right keypresses to a relevant stimulus dimension are faster when the stimulus location, although irrelevant, corresponds with that of the response than when it does not. This phenomenon, called the Simon effect, persisted across 1,800 trials of practice, although its magnitude was reduced. Practice with the relevant stimulus dimension presented at a centered location had little influence on the magnitude of the Simon effect when irrelevant location was varied subsequently, and practice with location irrelevant prior to performing with location relevant slowed responses. After practice responding to stimulus location with an incompatible spatial mapping, the Simon effect was reversed (i.e., responses were slower when stimulus location corresponded with response location) when location was made irrelevant. When the response keys were labeled according to the relevant stimulus dimension (the Hedge and Marsh [1975] task variation), this reversal from practice with a spatially incompatible mapping was found for both the congruent and the incongruent relevant stimulus-response mappings. Thus, task-defined associations between stimulus location and response location affect performance when location is changed from relevant to irrelevant, apparently through producing automatic activation of the previously associated response.  相似文献   

20.
In two experiments, we compared level of activation and temporal overlap accounts of compatibility effects in the Simon task by reducing the discriminability of spatial and non-spatial features of a target location word. Participants made keypress responses to the non-spatial or spatial feature of centrally presented location words. The discriminability of the spatial feature of the word (Experiment 1), or of both the spatial and non-spatial feature (Experiment 2), was manipulated. When the spatial feature of the word was task-irrelevant, lowering the discriminability of this feature reduced the compatibility effect. The compatibility effect was restored when the discriminability of both the task-relevant and task-irrelevant features were reduced together. Results provide further evidence for the temporal overlap account of compatibility effects. Furthermore, compatibility effects when the spatial information was task-relevant and those when the spatial information was task-irrelevant were moderately correlated with each other, suggesting a common underlying mechanism in both versions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号