首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three experiments were performed to examine the role that central and peripheral vision play in the perception of the direction of translational self-motion, or heading, from optical flow. When the focus of radial outflow was in central vision, heading accuracy was slightly higher with central circular displays (10°–25° diameter) than with peripheral annular displays (40° diameter), indicating that central vision is somewhat more sensitive to this information. Performance dropped rapidly as the eccentricity of the focus of outflow increased, indicating that the periphery does not accurately extract radial flow patterns. Together with recent research on vection and postural adjustments, these results contradict theperipheral dominance hypothesis that peripheral vision is specialized for perception of self-motion. We propose afunctional sensitivity hypothesis—that. self-motion is perceived on the basis of optical information rather than the retinal locus of stimulation, but that central and peripheral vision are differentially sensitive to the information characteristic of each retinal region.  相似文献   

2.
Three hypotheses have been proposed for the roles of central and peripheral vision in the perception and control of self-motion: (1) peripheral dominance, (2) retinal invariance, and (3) differential sensitivity to radial flow. We investigated postural responses to optic flow patterns presented at different retinal eccentricities during walking in two experiments. Oscillating displays of radial flow (0 degree driver direction), lamellar flow (90 degrees), and intermediate flow (30 degrees, 45 degrees) patterns were presented at retinal eccentricities of 0 degree, 30 degrees, 45 degrees, 60 degrees, or 90 degrees to participants walking on a treadmill, while compensatory body sway was measured. In general, postural responses were directionally specific, of comparable amplitude, and strongly coupled to the display for all flow patterns at all retinal eccentricities. One intermediate flow pattern (45 degrees) yielded a bias in sway direction that was consistent with triangulation errors in locating the focus of expansion from visible flow vectors. The results demonstrate functionally specific postural responses of both central and peripheral vision, contrary to the peripheral dominance and differential sensitivity hypotheses, but consistent with retinal invariance. This finding emphasizes the importance of optic flow structure for postural control regardless of the retinal locus of stimulation.  相似文献   

3.
The role of central and peripheral vision in the production of linear vection was assessed by using displays in which flow structure and sources of internal and external depth information were manipulated. Radial optical flow was more effective for inducing self-motion in both central and peripheral visual fields than was lamellar flow in displays of the same size. The presence of external occlusion information was necessary to induce linear vection when small displays were composed of lamellar flow, whereas the effectiveness of small radial displays did not depend on the availability of occlusion edges.  相似文献   

4.
Three hypotheses have been proposed for the roles of central and peripheral vision in the perception and control of self-motion: (1) peripheral dominance, (2) retinal invariance, and (3) differential sensitivity to radial flow. We investigated postural responses to optic flow patterns presented at different retinal eccentricities during walking in two experiments. Oscillating displays of radial flow (0° driver direction), lamellar flow (90°), and intermediate flow (30°, 45°) patterns were presented at retinal eccentricities of 0°, 30°, 45°, 60°, or 90° to participants walking on a treadmill, while compensatory body sway was measured. In general, postural responses were directionally specific, of comparable amplitude, and strongly coupled to the display for all flow patterns at all retinal eccentricities. One intermediate flow pattern (45°) yielded a bias in sway direction that was consistent with triangulation errors in locating the focus of expansion from visible flow vectors. The results demonstrate functionally specific postural responses in both central and peripheral vision, contrary to the peripheral dominance and differential sensitivity hypotheses, but consistent with retinal invariance. This finding emphasizes the importance of optic flow structure for postural control regardless of the retinal locus of stimulation.  相似文献   

5.
Perception of translational heading from optical flow   总被引:3,自引:0,他引:3  
Radial patterns of optical flow produced by observer translation could be used to perceive the direction of self-movement during locomotion, and a number of formal analyses of such patterns have recently appeared. However, there is comparatively little empirical research on the perception of heading from optical flow, and what data there are indicate surprisingly poor performance, with heading errors on the order of 5 degrees-10 degrees. We examined heading judgments during translation parallel, perpendicular, and at oblique angles to a random-dot plane, varying observer speed and dot density. Using a discrimination task, we found that heading accuracy improved by an order of magnitude, with 75%-correct thresholds of 0.66 degrees in the highest speed and density condition and 1.2 degrees generally. Performance remained high with displays of 63-10 dots, but it dropped significantly with only 2 dots; there was no consistent speed effect and no effect of angle of approach to the surface. The results are inconsistent with theories based on the local focus of outflow, local motion parallax, multiple fixations, differential motion parallax, and the local maximum of divergence. But they are consistent with Gibson's (1950) original global radial outflow hypothesis for perception of heading during translation.  相似文献   

6.
Induced self-motion in central vision   总被引:2,自引:0,他引:2  
Previous research on visually induced self-motion found that stimulation of the central visual field (up to 30 degrees in diameter) results in perceived object motion while self-motion requires peripheral stimulation. In the present study, perceived self-motion was induced with a radially expanding pattern simulating observer motion through a space filled with dots, with visual angles of 7.5 degrees, 10.6 degrees, 15 degrees, and 21.2 degrees. Speed and texture density were also varied. The duration of reported self-motion (a) decreased with increased speed, (b) failed to increase with increased visual angle, and (c) decreased with visual angle at the highest speed level. In a second experiment, subjects rated the perceived depth of the displays. The speed and speed/area interaction effects on judged depth matched those found for induced self-motion. These results suggest an extension of the focal/ambient theory: In addition to a more primitive ambient processing mode that requires peripheral vision, there is a higher level system concerned with ambient processing that functions in the central visual field and uses more complex stimulus information, such as internal depth represented in a radially expanding pattern.  相似文献   

7.
During self-motions, different patterns of optic flow are presented to the left and right eyes. Previous research has, however, focused mainly on the self-motion information contained in a single pattern of optic flow. The present experiments investigated the role that binocular disparity plays in the visual perception of self-motion, showing that the addition of stereoscopic cues to optic flow significantly improves forward linear vection in central vision. Improvements were also achieved by adding changingsize cues to sparse (but not dense) flow patterns. These findings showed that assumptions in the heading literature that stereoscopic cues facilitate self-motion only when the optic flow has ambiguous depth ordering do not apply to vection. Rather, it was concluded that both stereoscopic and changingsize cues provide additional motion-in-depth information that is used in perceiving self-motion.  相似文献   

8.
Accurate and efficient control of self-motion is an important requirement for our daily behavior. Visual feedback about self-motion is provided by optic flow. Optic flow can be used to estimate the direction of self-motion (‘heading’) rapidly and efficiently. Analysis of oculomotor behavior reveals that eye movements usually accompany self-motion. Such eye movements introduce additional retinal image motion so that the flow pattern on the retina usually consists of a combination of self-movement and eye movement components. The question of whether this ‘retinal flow’ alone allows the brain to estimate heading, or whether an additional ‘extraretinal’ eye movement signal is needed, has been controversial. This article reviews recent studies that suggest that heading can be estimated visually but extraretinal signals are used to disambiguate problematic situations. The dorsal stream of primate cortex contains motion processing areas that are selective for optic flow and self-motion. Models that link the properties of neurons in these areas to the properties of heading perception suggest possible underlying mechanisms of the visual perception of self-motion.  相似文献   

9.
Illusory self-motion (vection) is thought to be determined by motion in the peripheral visual field, whereas stimulation of more central retinal areas results in object-motion perception. Recent data suggest that vection can be produced by stimulation of the central visual field provided it is configured as a more distant surface. In this study vection strength (tracking speed, onset latency, and the percentage of trials where vection was experienced) and the direction of self-motion produced by displays moving in the central visual field were investigated. Apparent depth, introduced by using kinetic occlusion information, influenced vection strength. Central displays perceived to be in the background elicited stronger vection than identical displays appearing in the foreground. Further, increasing the eccentricity of these displays from the central retina diminished vection strength. If the central and peripheral displays were moved in opposite directions, vection strength was unaffected, and the direction of vection was determined by motion of the central display on almost half of the trials when the centre was far. Near centres produced fewer centre-consistent responses. A complete understanding of linear vection requires that factors such as display size, retinal locus, and apparent depth plane are considered.  相似文献   

10.
How do people control locomotion while their eyes are simultaneously rotating? A previous study found that during simulated rotation, they can perceive a straight path of self-motion from the retinal flow pattern, despite conflicting extraretinal information, on the basis of dense motion parallax and reference objects. Here we report that the same information is sufficient for active control ofjoystick steering. Participants steered toward a target in displays that simulated a pursuit eye movement. Steering was highly inaccurate with a textured ground plane (motion parallax alone), but quite accurate when an array of posts was added (motion parallax plus reference objects). This result is consistent with the theory that instantaneous heading is determined from motion parallax, and the path of self-motion is determined by updating heading relative to environmental objects. Retinal flow is thus sufficient for both perceiving self-motion and controlling self-motion with a joystick; extraretinal and positional information can also contribute, but are not necessary.  相似文献   

11.
《Ecological Psychology》2013,25(3):251-274
Stoffregen (1985, 1986) found that the periphery of the retina is insensitive to radially structured optic flow specifying postural sway. This raised the issue of whether the retinal periphery is sensitive to radially structured flow per se, that is, to radial flow specifying events other than postural sway. In the experiment discussed herein we addressed this question in the context of optical looming. Computer-generated optical displays were presented to the retinal center or periphery of standing participants, who were required to dodge out of the path of the depicted object at the last moment before impact. Depicted trajectories were slightly eccentric, requiring participants to employ a directional response. Results showed that the trajectory and time-to-contact of the simulated object strongly influenced responses for peripheral as well as central looms. In general, responses to peripheral looms closely matched those to central looms. These findings indicate that the periphery of the retina is sensitive to optically specified time-to-contact, despite the fact that such information is carried in radially structured flow patterns. We argue that impending collision and postural sway can be distin- guished on the basis of dynamics that are characteristic of each event.  相似文献   

12.
In this study, we examined the effects of different gaze types (stationary fixation, directed looking, or gaze shifting) and gaze eccentricities (central or peripheral) on the vection induced by jittering, oscillating, and purely radial optic flow. Contrary to proposals of eccentricity independence for vection (e.g., Post, 1988), we found that peripheral directed looking improved vection and peripheral stationary fixation impaired vection induced by purely radial flow (relative to central gaze). Adding simulated horizontal or vertical viewpoint oscillation to radial flow always improved vection, irrespective of whether instructions were to fixate, or look at, the center or periphery of the self-motion display. However, adding simulated high-frequency horizontal or vertical viewpoint jitter was found to increase vection only when central gaze was maintained. In a second experiment, we showed that alternating gaze between the center and periphery of the display also improved vection (relative to stable central gaze), with greater benefits observed for purely radial flow than for horizontally or vertically oscillating radial flow. These results suggest that retinal slip plays an important role in determining the time course and strength of vection. We conclude that how and where one looks in a self-motion display can significantly alter vection by changing the degree of retinal slip.  相似文献   

13.
Two goals were pursued in an investigation of possible visual sources for directionality judgments of ego-motion. First, J. J. Gibson’s (1950) global radial outflow hypothesis was contrasted with a simple extrapolation strategy. Second, backing-direction judgments capitalizing on the informational equivalence of global radial outflow created during forward ego-motion and global radial inflow during backward ego-motion were explored. In comparing the accuracy of heading and backing judgments, new insights about global flow and extrapolation strategies were found. Consistent with the hypothesis of an extrapolation strategy, Experiment 1 demonstrated that backing judgments were more accurate than heading judgments when linear observer motion was simulated by means of a point-light flow field. In this case, accuracy was higher with two-point-light displays (extrapolation) than with more complex displays (global flow). Experiment 2 showed that in cases where extrapolation was not possible, such as circular motion, no advantage of backing judgments could be found and judgments were generally less accurate. We conclude that, whenever possible, observers use extrapolation to determine their heading/backing. Only when global flow is the only good source of information do they rely on it.  相似文献   

14.
Perception of circular heading from optical flow   总被引:1,自引:0,他引:1  
Observers viewed random-dot optical flow displays that simulated self-motion on a circular path and judged whether they would pass to the right or left of a target at 16 m. Two dots in two frames are theoretically sufficient to specify circular heading if the orientation of the rotation axis is known. Heading accuracies were better than 1.5 degrees with a ground surface, wall surface, and 3D cloud of dots, and were constant over densities down to 2 dots, consistent with the theory. However, there was an inverse relation between the radius of the observer's path and constant heading error, such that at small radii observers reported heading 3 degrees to the outside of the actual path with the ground and to the inside with the wall and cloud. This may be an artifact of a small display screen.  相似文献   

15.
The effects of the size of a stimulus and its eccentricity (central or peripheral) on the visually induced perception of horizontal translational self-motion (vection) were investigated. The central and peripheral areas of the observers' visual field were simultaneously stimulated by random dot patterns that moved in opposite directions. The results of two experiments indicated that the effects of central and peripheral presentations of the moving visual pattern are equivalent, and that vection strength is determined by the stimulus size and speed but not by its eccentricity. These results are consistent with the findings of previous studies that suggested that there are no qualitative differences in the vection-inducing potentials of the central and peripheral areas of the visual field, and are counter to the more traditional hypothesis, which has assumed that the perception of self-motion is specifically assigned to peripheral vision.  相似文献   

16.
Three experiments were conducted to determine whether the discrimination of heading from optic flow is retinally invariant and to determine the importance of acuity in accounting for heading eccentricity effects. In the first experiment, observers were presented with radial flow fields simulating forward translation through a three-dimensional volume of dots. The flow fields subtended 10 degrees of visual angle and were presented at 0 degree, 10 degrees, 20 degrees, and 40 degrees of retinal eccentricity. The observers were asked to indicate whether the simulated movement was to the right or the left of a target that appeared at the end of the display sequence. Eye movements were monitored with an electrooculogram apparatus. In a second experiment, static acuity thresholds were derived for each of the observers at the same retinal eccentricities. There was a significant increase in heading detection thresholds with retinal eccentricity (from 0.92 degree at 0 degree retinal eccentricity to 3.47 degrees at 40 degrees). An analysis of covariance indicated that the variation in sensitivity to radial flow, as a function of retinal eccentricity, is independent of acuity. Similar results were obtained when the Vernier acuity of observers was measured. These results suggest that the discrimination of heading from radial flow is not retinally invariant.  相似文献   

17.
Two experiments in which participants were given control over the direction of computer-simulated self-motion were conducted. Environments were designed to evaluate the functionality of simple and multiple motion parallax as well as a separation ratio (sigma; indexing the separation of 2 objects in depth) for the perception and control of heading. Results provide a 1st indication of optimizing performance in the top end of the global optical flow velocity range available during human bipedal self-motion. The introduction of sigma, developed to explain performance improvements with decreasing distance to the target, was able to account for most of the performance differences among all simulated environments. The rate of change in horizontal optical separation between at least 2 discontinuities was identified as a likely candidate for the optical foundation of the perception and control of heading during target approach.  相似文献   

18.
Kim J  Palmisano S  Bonato F 《Perception》2012,41(4):402-414
Research has shown that adding simulated linear head oscillation to radial optic flow displays enhances the illusion of self-motion in depth (ie linear vection). We examined whether this oscillation advantage for vection was due to either the added motion parallax or retinal slip generated by insufficient compensatory eye movement during display oscillation. We constructed radial flow displays which simulated 1 Hz horizontal linear head oscillation (generates motion parallax) or angular head oscillation in yaw (generates no motion parallax). We found that adding simulated angular or linear head oscillation to radial flow increased the strength of linear vection in depth. Neither type of simulated head oscillation significantly reduced vection onset latencies relative to pure radial flow. Simultaneous eye-movement recordings showed that slow-phase ocular following responses (OFRs) were induced in both linear and angular viewpoint oscillation conditions. Vection strength was significantly reduced by active central fixation when viewing displays which simulated angular, but not linear, head oscillation. When these displays with angular oscillation were viewed without stable fixation, vection strength was found to increase with the velocity and regularity of the OFR. We conclude that vection improvements observed during central viewing of displays with angular viewpoint oscillation depend on the generation of eye movements.  相似文献   

19.
Crowell JA  Andersen RA 《Perception》2001,30(12):1465-1488
The pattern of motion in the retinal image during self-motion contains information about the person's movement. Pursuit eye movements perturb the pattern of retinal-image motion, complicating the problem of self-motion perception. A question of considerable current interest is the relative importance of retinal and extra-retinal signals in compensating for these effects of pursuit on the retinal image. We addressed this question by examining the effect of prior motion stimuli on self-motion judgments during pursuit. Observers viewed 300 ms random-dot displays simulating forward self-motion during pursuit to the right or to the left; at the end of each display a probe appeared and observers judged whether they would pass left or right of it. The display was preceded by a 300 ms dot pattern that was either stationary or moved in the same direction as, or opposite to, the eye movement. This prior motion stimulus had a large effect on self-motion judgments when the simulated scene was a frontoparallel wall (experiment 1), but not when it was a three-dimensional (3-D) scene (experiment 2). Corresponding simulated-pursuit conditions controlled for purely retinal motion aftereffects, implying that the effect in experiment 1 is mediated by an interaction between retinal and extra-retinal signals. In experiment 3, we examined self-motion judgments with respect to a 3-D scene with mixtures of real and simulated pursuit. When real and simulated pursuits were in opposite directions, performance was determined by the total amount of pursuit-related retinal motion, consistent with an extra-retinal 'trigger' signal that facilitates the action of a retinally based pursuit-compensation mechanism. However, results of experiment 1 without a prior motion stimulus imply that extra-retinal signals are more informative when retinal information is lacking. We conclude that the relative importance of retinal and extra-retinal signals for pursuit compensation varies with the informativeness of the retinal motion pattern, at least for short durations. Our results provide partial explanations for a number of findings in the literature on perception of self-motion and motion in the frontal plane.  相似文献   

20.
Three experiments examined the role of central and peripheral vision in collision detection and control of braking. Displays simulated observer movement over a ground plane toward obstacles lying in the observer's path (Experiments 1 & 3) or toward a vertical 2-D plane (Experiment 2). Optical expansion was depicted under the constraint that remains constant throughout the approach. Displays employed in Experiments 1 and 2 were masked centrally (peripheral vision) or peripherally (central vision) with mask size ranging from 10° to 30° in diameter in steps of 5°. Participants responded to the optical pattern engendered by with more consistency in the peripheral vision condition than in the central vision condition. Experiment 3 further examined the peripheral advantage by masking the displayed peripheral region from 20% to 80%. Largely unaffected performance across masked areas of the periphery confirmed that the efficacy of the peripheral retina does not lie in more extensive flow vectors but in its inherent sensitivity to optical consequences engendered by . These results were compared with psychophysical findings in self-motion perception and clinical findings in patients with partial vision loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号