首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Human movement science》1987,6(2):117-131
The purpose of this research was to investigate motor skill practice related changes in the activity pattern and mean frequency of the electromyogram and the subsequent motor performance. By using both electromyographic (EMG) activity levels and the frequency spectrum of the EMG signal, it is possible to gain an understanding of the modifications that may occur with skill acquisition. Subject's angular position and bipolar surface EMG activity from the biceps brachii and triceps brachii muscles were recorded and digitized at 1000 samples/second. Movement time and EMG data averaged over early and late practice trials were compared to evaluate the effects of practice on EMG activity patterns (RMS) and the EMG frequency spectra (mean frequency). Changes in EMG activity and frequency patterns observed at both movement velocities reflect modifications in the control of force gradation in relation to skill practice and learning. Although it is not possible to assess specific changes in motor unit recruitment order, it appears that motor units were controlled in a different manner after skill practice.  相似文献   

2.
The relationship between the modifications in the myoclectrical activity after practice and the performance enhancement was examined regarding a ballistic movement of the elbow. 41 subjects practiced a novel throwing skill, which involved the throw of a ball, performing elbows flexion. Surface electromyograms of four muscles in the elbow region were analyzed, aiming at identifying the changes in the timing and the intensity of muscle activation that may account for improved performance. A repeated-measures analysis of variance identified an improvement in performance scores after practice and a significant decrease in the EMG for the agonists and the primary antagonist. Moreover, a significant increase in the delay of the activity onset in the antagonists was observed after practice. The variations of the EMG for the biceps brachii and the anconeus were significantly elated to improvement in performance. It was concluded that the modifications in the electrical activity of those to muscles were primarily responsible for the physical alterations associated with improved performance.  相似文献   

3.
In previous studies of rapid elbow movements in young healthy men, characteristic task-dependent changes in the patterns of muscle activation when movement speed or distance was varied have been reported. In the present study, the authors investigated whether age or gender is associated with changes in the patterns of muscle activity previously reported in young men. Arm movements of 10 healthy older and 10 healthy younger participants (5 men and 5 women in each group) were studied. Surface electromyograms (EMGs) from agonist (biceps) and antagonist (triceps) muscles, kinematic and kinetic parameters, as well as anthropometric and strength measures were recorded. All 4 groups of participants showed similar task- (distance or speed) dependent changes in biphasic EMG activity. Similar modulation of the initial rate of rise of the EMG, integrated agonist and antagonist EMG activity, as well as their relative timing were observed in all 4 groups. Those results suggest that older individuals of both genders retain the control strategies for elbow movements used by young individuals. Despite the qualitative similarities in the patterns of muscle activation, the men moved more quickly than the women, and younger participants moved more quickly than older participants. Those performance differences could not be explained in terms of differences in body size and strength alone.  相似文献   

4.
In previous studies of rapid elbow movements in young healthy men, characteristic task-dependent changes in the patterns of muscle activation when movement speed or distance was varied have been reported. In the present study, the authors investigated whether age or gender is associated with changes in the patterns of muscle activity previously reported in young men. Arm movements of 10 healthy older and 10 healthy younger participants (5 men and 5 women in each group) were studied. Surface electromyograms (EMGs) from agonist (biceps) and antagonist (triceps) muscles, kinematic and kinetic parameters, as well as anthropometric and strength measures were recorded. All 4 groups of participants showed similar task- (distance or speed) dependent changes in biphasic EMG activity. Similar modulation of the initial rate of rise of the EMG, integrated agonist and antagonist EMG activity, as well as their relative timing were observed in all 4 groups. Those results suggest that older individuals of both genders retain the control strategies for elbow movements used by young individuals. Despite the qualitative similarities in the patterns of muscle activation, the men moved more quickly than the women, and younger participants moved more quickly than older participants. Those performance differences could not be explained in terms of differences in body size and strength alone.  相似文献   

5.
Abstract

This study investigated the muscle activity and force variability in response to perturbation of assistive force during isometric elbow flexion. Sixteen healthy right-handed young men (age: 22.0?±?1.1?years; height: 171.9?±?4.8?cm; weight 68.4?±?11.2?kg) were recruited and the muscle activity of biceps brachii and triceps brachii were assessed using surface electromyography. Workload force and assistive force applied on isometric elbow flexion significantly affected the changes in both biceps and triceps muscle activities. A higher assistive force was shown to result in reduced biceps muscle activity compared to the unassisted period. In contrast, the efficiency of the assistive force acting on the biceps decreased as the assistive force increased. In general, the force variability of the biceps muscle remained approximately the same at lower workload force conditions than that at higher workload force conditions. In conclusion, higher assistive force may not yield a higher performance efficiency in human-assistive force interaction.  相似文献   

6.
To investigate how human motor regulatory systems are modified by prior knowledge of a predictable external perturbation, six normal human subjects, each when sitting on a chair, were required to maintain a stable elbow flexion angle (90 degrees) while different weight perturbations were applied (0.5 kg or 2-kg loads). Loads were applied either by the experimenter Without Anticipation or With Anticipation by the subject's own contralateral hand. Acceleration of the forearm movement (elbow extension and flexion) by loads and electromyograms (EMGs) of the biceps brachii (BB) and the triceps brachii (TB) muscle were recorded. Under With Anticipation conditions, preceding EMG activities of BB and TB muscles prior to the onset time of perturbation were clearly observed. Furthermore, the amount of these preceding EMG activities was larger in the heavy load perturbation than in the light load perturbation. Under Without Anticipation conditions, however, these preceding EMG activities were not observed. In the preceding EMG activities, EMG bursts (latency 20 msec.) of a presumed stretch reflex induced by the perturbation were clearly observed. Thus, the function of anticipatory adjustment of mainitaining the elbow angle definitely appears to optimize limb stability in the case of the mechanical self-applied perturbation. Furthermore, the extent of the anticipatory adjustment of the elbow angle was dependent on the predicted magnitude of load.  相似文献   

7.
One purpose of the experiments reported here was to further clarify the effect of varying loads on postural adjustments. Another was to reevaluate whether or not the timing of electromyographic (EMG) activity in the postural muscle is preprogrammed. To accomplish these goals, we compared the effect of the presence or absence of prior knowledge of a load on the timing of EMG activity in the postural muscle (biceps femoris [BF]) with that in the focal muscle (anterior deltoid [AD]). Although the sequence of EMG activation was similar under conditions with and without a load, the timing of postural EMG activities (BFi, ipsilateral BF; BFc, contralateral BF) in associated postural adjustments was dependent on the force of arm movement, and the latencies of postural EMG activities (BFi-BFc) were dependent on the speed of arm movement. This indicates that EMG changes in the upper (focal muscle) and lower limbs (postural muscle) were triggered by different motor programs. Moreover, similar EMG activities were observed in postural muscles when the subject had advance knowledge of the presence or the absence of a load. Thus, this suggests that BFi may be centrally preprogrammed (anticipatory regulation) and BFc may be feedback regulated. Furthermore, environmental information may be a critical source of influence on those postural responses.  相似文献   

8.
One purpose of the experiments reported here was to further clarify the effect of varying loads on postural adjustments. Another was to reevaluate whether or not the timing of electromyographic (EMG) activity in the postural muscle is preprogrammed. To accomplish these goals, we compared the effect of the presence or absence of prior knowledge of a load on the timing of EMG activity in the postural muscle (biceps femoris [BF]) with that in the focal muscle (anterior deltoid [AD]). Although the sequence of EMG activation was similar under conditions with and without a load, the timing of postural EMG activities (BFi, ipsilateral BF; BFc, contralateral BF) in associated postural adjustments was dependent on the force of arm movement, and the latencies of postural EMG activities (BFi—BFc) were dependent on the speed of arm movement. This indicates that EMG changes in the upper (focal muscle) and lower limbs (postural muscle) were triggered by different motor programs. Moreover, similar EMG activities were observed in postural muscles when the subject had advance knowledge of the presence or the absence of a load. Thus, this suggests that BFi may be centrally preprogrammed (anticipatory regulation) and BFc may be feedback regulated. Furthermore, environmental information may be a critical source of influence on those postural responses.  相似文献   

9.
We aimed to determine the force irradiation effect of kinesiotaping (KT) on contralateral muscle activity during unilateral muscle contraction. Forty healthy (26 females, 14 males) subjects were divided into two groups: KT and control groups. KT was applied on the biceps brachii at the contralateral limb (non-dominant limb) in the KT group, whereas no taping was applied to the control group. All participants performed unilateral isometric, concentric, and eccentric contractions with their dominant upper limbs (exercised limb) by means of an isokinetic dynamometer, while the contralateral limb was in the resting condition, neutral position, and motionless during the testing procedure. During the exercise, contralateral biceps brachii muscle activity was recorded by surface electromyography (EMG). To quantify the muscle activation, EMG signals were expressed as a percentage of the maximal isometric voluntary contraction, which is referred to as %EMGmax. The KT group showed significantly higher %EMGmax in the biceps brachii compared to the control group at the contralateral limb during the isometric, concentric, and eccentric contractions (p = 0.035, p = 0.046, and p = 0.002, respectively) The median values of the contralateral muscle activity were 2.74 %EMGmax and 6.62 %EMGmax during the isometric contraction for the control and KT groups, respectively (p = 0.035). During the concentric contraction, the median values of the contralateral muscle activity were 1.61 %EMGmax and 9.39 %EMGmax for the control and KT groups, respectively (p = 0.046). The median values of the contralateral muscle activity were 4.49 %EMGmax and 22.89 %EMGmax for the eccentric contraction for the control and KT groups, respectively (p = 0.002). In conclusion, KT application on the contralateral limb increased the contralateral muscle activation in the biceps brachii during the unilateral isometric, concentric, and eccentric contractions.  相似文献   

10.
The aim of the study was to analyze electromechanical delay in a ballistic movement of the superior limb. 10 male karate athletes and 9 nonathletes (without karate experience) performed a motor skill as fast and powerfully as possible, with impact on a makiwara (karate training instrument). For each participant, 10 choku-zuki performances were analyzed. Kinematics and surface electromyographic (EMG) activity of the anterior and posterior portions of deltoid, pectoralis major, latissimus dorsi, triceps brachii, and biceps brachii were recorded. Athletes had significantly shorter delay in arm flexion agonist muscles and significantly higher delay in arm flexion antagonist muscles and in forearm extension agonists. Results suggest that enhanced performance in athletes was mainly due to motor learning.  相似文献   

11.
One defining characteristic of skilled motor performance is the ability to complete the task with minimum energy expenditure. This experiment was designed to examine practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Participants rowed an ergometer at 100 W for ten 16-min sessions. Oxygen consumption and perceived exertion (central and peripheral) declined significantly with practice and movement economy improved (reliably) by 9%. There was an associated but non-significant reduction in heart rate. Stroke rate decreased significantly. Peak forces applied to the ergometer handle were significantly less variable following practice and increased stability of the post-practice movement pattern was also revealed in more tightly clustered plots of hip velocity against horizontal displacement. Over practice trials muscle activation decreased, as revealed in integrated EMG data from the vastus lateralis and biceps brachii, and coherence analysis revealed the muscle activation patterns became more tightly coordinated. The results showed that practice reduced the metabolic energy cost of performance and practice-related refinements to coordination and control were also associated with significant reductions in muscle activation.  相似文献   

12.
Human subjects performed simple flexion and extension movements about the elbow in a visual step-tracking paradigm. Movements were self-terminated. Subjects were instructed to increase movement velocity while maintaining end-point accuracy during practice. The effects of practice on the pattern and variability of EMG activity of the biceps and triceps muscles were studied. Initial movements were performed using reciprocal phasic activation of agonist and antagonist muscles as indicated by surface EMGs. With practice, increases in movement speed were associated with larger agonist and antagonist bursts and an earlier onset of the antagonist burst. Decreased duration of the premovement antagonist silence was also observed during practice. Decreases in variability of movements during practice were not accompanied by equivalent decreases in variability of the associated EMGs. Surprisingly, both agonist and antagonist EMGs were more variable in faster, practiced movements. The combined agonist-antagonist EMG variability depended on both movement speed and trajectory variability. Lower variability in movements in the presence of greater variability in the related EMGs occurred because of linked variations in agonist and antagonist muscle activities. Variations in the first agonist burst were often compensated for by associated variations in the antagonist and late agonist bursts. These linked variations maintained the limb trajectory relatively constant in spite of large variations in the first agonist burst. Modifications to impulse-variability models are therefore needed to explain compensations for variability in accelerative impulses (produced by the first agonist burst) by linked variations in impulses for deceleration (produced by the antagonist and late agonist bursts).  相似文献   

13.
Human subjects performed simple flexion and extension movements about the elbow in a visual step-tracking paradigm. Movements were self-terminated. Subjects were instructed to increase movement velocity while maintaining end-point accuracy during practice. The effects of practice on the pattern and variability of EMG activity of the biceps and triceps muscles were studied. Initial movements were performed using reciprocal phasic activation of agonist and antagonist muscles as indicated by surface EMGs. With practice, increases in movement speed were associated with larger agonist and antagonist bursts and an earlier onset of the antagonist burst. Decreased duration of the premovement antagonist silence was also observed during practice.

Decreases in variability of movements during practice were not accompanied by equivalent decreases in variability of the associated EMGs. Surprisingly, both agonist and antagonist EMGs were more variable in faster, practiced movements. The combined agonist-antagonist EMG variability depended on both movement speed and trajectory variability. Lower variability in movements in the presence of greater variability in the related EMGs occurred because of linked variations in agonist and antagonist muscle activities. Variations in the first agonist burst were often compensated for by associated variations in the antagonist and late agonist bursts. These linked variations maintained the limb trajectory relatively constant in spite of large variations in the first agonist burst. Modifications to impulse-variability models are therefore needed to explain compensations for variability in accelerative impulses (produced by the first agonist burst) by linked variations in impulses for deceleration (produced by the antagonist and late agonist bursts).  相似文献   

14.
The effects of electromyographic (EMG) biofeedback on reaction time (RT) and movement time (MT) were investigated utilizing 42 right-handed, male subjects from a university population. Subjects were randomly divided into three groups, a control group and two experimental groups. Both experimental groups were exposed to their EMG signals from their triceps brachii during the task, one experimental group received written information explaining the purpose of the EMG was to improve performance through biofeedback. Reaction times of the first block of 25 trials were significantly faster than those on the subsequent three blocks of trials for all groups. This provided evidence of learning. No other significant effects for reaction times were observed. Mean movement time for the EMG-only group was significantly slower than the means of either the Control group or EMG-Biofeedback group, with no difference between the latter two. The differences between experimental groups may have been related to alteration of strategy, anxiety, motivation.  相似文献   

15.
Current evidence suggests that movement quality is impacted by postural adjustments made in advance of planned movement. The trunk inevitably plays a key role in these adjustments, by creating a stable foundation for limb movement. The purpose of this study was to examine anticipatory trunk muscle activity during functional tasks in children with and without developmental coordination disorder (DCD). Eleven children with DCD (age 7 to 14 years) and 11 age-matched, typically-developing children performed three tasks: kicking a ball, climbing stairs, and single leg balance. Surface electromyography (EMG) was used to examine the neuromuscular activity of bilateral transversus abdominis/internal oblique, external oblique and L3/4 erector spinae, as well as the right tibialis anterior and rectus femoris muscles. Onset latencies for each muscle were calculated relative to the onset of rectus femoris activity. In comparison to the children with DCD, the typically-developing children demonstrated earlier onsets for right tibialis anterior, bilateral external oblique, and right transversus abdominis/internal oblique muscles. These results suggest that anticipatory postural adjustments may be associated with movement problems in children with DCD, and that timing of both proximal and distal muscles should be considered when designing intervention programs for children with DCD.  相似文献   

16.
An experiment was performed to determine the effects of initial limb condition on final accuracy of rapid, elbow flexion movements in the horizontal plane. Electromyographic (EMG) recordings were also taken from an agonist (biceps) and antagonist (triceps) muscle by means of bipolar surface electrodes. In the experiment the subject's forearm was passively oscillated by means of an electric motor, and when an auditory buzzer sounded, the subject was required to react as quickly as possible and rapidly move to the previously learned target angle. Thus, movements could be initiated from either static or moving starting positions. The results indicated that general accuracy was not greatly affected by these manipulations, however, constant error and pre-motor reaction time suggested that subjects may have been utilizing initial limb condition information contrary to a mass-spring view. EMG data showed that the timing characteristics of the agonist and antagonist muscles were modulated, depending on the type of movement produced, supporting an impulse-timing model (Wallace 1981).  相似文献   

17.
Bilateral deficit (BLD) describes a phenomenon that the force produced during maximal simultaneous bilateral contraction is lower than the sum of those produced unilaterally. The aim of this study was to examine the potential sex-related differences in BLD in upper body proximal and distal limb muscles. Ten men and eight women performed single-joint maximal contractions with their elbow flexors and index finger abductors at separate laboratory visits, during which the maximal isometric voluntary contractions (MVICs) were performed unilaterally and bilaterally with a randomized order in the designated muscle group. Surface electromyographic (EMG) signals were recorded from the prime movers of the designated muscle groups (biceps brachii and first dorsal interosseous) during the maximal contractions. Both men and women demonstrated BLD in their elbow flexors (deficit: men = −11.0 ± 6.3%; women = −10.2 ± 5.0%). Accompanied by this force deficit was the reduced EMG amplitude from the dominant biceps brachii (collapsed across sex: p = 0.045). For the index finger abductors, only men (deficit = −13.7 ± 6.1%), but not women showed BLD. Our results suggested that the BLD in the proximal muscle group is likely induced by the decreased maximal muscle activity from the dominant prime mover. The absence of BLD in women’s index finger muscle is largely due to the inter-subject variability possibly related to the sex hormone flux and unique levels of interhemispheric inhibition.  相似文献   

18.
Coordination of intentional upper limb movement concurrent with supporting postural activity was investigated in adult males under varying task conditions. Seven subjects performed a 60 deg rapid elbow flexion (focal movement) to a target in movement times of 170, 195, or 220 ms while standing. Measurement of center of pressure via a force platform revealed that subjects adopted individual premovement postural preferences such that locus of center of pressure resided in one predominant quadrant of the foot. Each premovement postural preference was accompanied by one most common postural muscle onset sequence as indicated by bilateral EMG analysis of rectus femoris and biceps femoris. In addition, onset times for postural muscles exhibiting anticipatory postural activity occurred earlier relative to biceps branchii as focal movement velocity increased. The finding that each premovement postural condition was accompanied by one particular postural muscle onset sequence suggested that postural synergies were flexibly organized with respect to onset sequence.  相似文献   

19.
Under simple- and choice-RT conditions, the biceps brachii muscle was examined in 8 healthy male subjects to determine how the temporal and spatial characteristics of elbow flexion and forearm supination differed at the initial phase of EMG activity and whether preparation or the presence of response uncertainty influenced the EMG outputs of the two movements. In the simple-RT condition, RT of supination was significantly faster than that of flexion but EMG activity of supination was less than that of flexion. In contrast, in the choice-RT condition, RT of flexion was significantly faster than that of supination but EMG activity of flexion was significantly reduced compared to supination. These findings indicate that advanced preparation or motor set facilitates the differentiation of RTs and EMG activities of the response movements and that response uncertainty causes a significant change in the temporal and spatial specificity of both elbow flexion and forearm supination.  相似文献   

20.
During movement, the intrinsic muscle force-velocity property decreases the net force for the shortening muscle (agonist) and increases it for the lengthening muscle (antagonist). The authors present a quantitative analysis of the effect of that muscle property on activation and force output of the same muscle acting as agonist and antagonist in fast and medium speed goal-oriented movements. They compared biceps activation and force output when that muscle was the agonist in a series of elbow flexions and when it was the antagonist in a series of elbow extensions. They performed the same analysis for the lateral, long, and medial heads of the triceps muscle. Muscle EMG was about 2 times larger and the angular impulse developed by the modeled contractile torque was up to 3 times larger when the muscle or muscles acted as the agonist than when the same muscle or muscles acted as the antagonist in movements with similar kinematics. The large effect of the muscle force-velocity property strongly suggests that the neural controller must account for intrinsic muscle properties to generate movements with a commonly observed bell-shaped velocity profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号