首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
Post-training introparitoneal (ip) administration of ACTH1-24 (25 ng/rat) or epinephrine HCl (625 ng/rat) facilitated retention of a step-down inhibitory avoidance task acquired using a small start platform (5-cm high, 25 X 7 cm) and a low intensity training footshock (0.3 mA, 60 Hz), and caused retrograde amnesia for a similar task acquired using a large platform (5-cm high, 25 X 25 cm) and a high intensity training footshock (0.8 mA, 60 Hz). The post-training intracerebroventricular (icv) administration of 5, 25, or 125 ng/rat of ACTH or of 5, 25, 125, 625, or 1250 ng/rat of epinephrine had no effect on retention of either task. These findings suggest that memory modulation by ACTH and epinephrine is mediated by reflexes initiated at peripheral receptors that affect brain activity during the post-training period.  相似文献   

3.
Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the ipsilateral NAc shell or core in male Sprague-Dawley rats ( approximately 300 g). One week later, the rats were trained on an inhibitory avoidance (IA) task and, 48 h later, they were tested for retention. Drugs were infused into the BLA and NAc shell or core immediately after training. Post-training intra-BLA infusions of DA enhanced retention, as assessed by latencies to enter the shock compartment on the retention test. Infusions of the general DA receptor antagonist cis-Flupenthixol (Flu) into the NAc shell (but not the core) blocked the memory enhancement induced by the BLA infusions of DA. In the reverse experiment, post-training intra-NAc shell infusions of DA enhanced retention and Flu infusions into the BLA blocked the enhancement. These findings indicate that BLA modulation of memory consolidation requires concurrent DA receptor activation in the NAc shell but not the core. Similarly, NAc shell modulation of memory consolidation requires concurrent DA receptor activation in the BLA. Together with previous findings, these results suggest that the dopaminergic innervation of the BLA and NAc shell is critically involved in the modulation of memory consolidation.  相似文献   

4.
Dose-dependent changes in sensitivity to reinforcement were found when rats were treated with low, moderate, and high doses of the partial dopamine D1-type receptor agonist SKF38393 and with the nonselective dopamine agonist apomorphine, but did not change when rats were treated with similar doses of the selective dopamine D2-type receptor agonist quinpirole. Estimates of bias did not differ significantly across exposure to SKF38393 or quinpirole, but did change significantly at the high dose of apomorphine. Estimates of goodness of fit (r2) did not change significantly during quinpirole exposure. Poor goodness of fit was obtained for the high doses of SKF38393 and apomorphine. Decrements in absolute rates of responding were observed at the high dose of quinpirole and at the moderate and high doses of SKF38393 and apomorphine. Changes in r2 and absolute responding may be due to increases in stereotyped behavior during SKF38393 and apomorphine exposure that, in contrast to quinpirole, were distant from the response lever. The present data provide evidence that sensitivity to reward is affected more strongly by dopamine D1-like receptors rather than D2-like receptors, consistent with evidence from other studies investigating consummatory dopamine behavior and the tonic/phasic dopamine hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号