首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bootstrap Effect Sizes (bootES; Gerlanc & Kirby, 2012) is a free, open-source software package for R (R Development Core Team, 2012), which is a language and environment for statistical computing. BootES computes both unstandardized and standardized effect sizes (such as Cohen’s d, Hedges’s g, and Pearson’s r) and makes easily available for the first time the computation of their bootstrap confidence intervals (CIs). In this article, we illustrate how to use bootES to find effect sizes for contrasts in between-subjects, within-subjects, and mixed factorial designs and to find bootstrap CIs for correlations and differences between correlations. An appendix gives a brief introduction to R that will allow readers to use bootES without having prior knowledge of R.  相似文献   

2.
State-trace analysis (Bamber, Journal of Mathematical Psychology, 19, 137-181, 1979) is a graphical analysis that can determine whether one or more than one latent variable mediates an apparent dissociation between the effects of two experimental manipulations. State-trace analysis makes only ordinal assumptions and so, is not confounded by range effects that plague alternative methods, especially when performance is measured on a bounded scale (such as accuracy). We describe and illustrate the application of a freely available GUI driven package, StateTrace, for the R language. StateTrace automates many aspects of a state-trace analysis of accuracy and other binary response data, including customizable graphics and the efficient management of computationally intensive Bayesian methods for quantifying evidence about the outcomes of a state-trace experiment, developed by Prince, Brown, and Heathcote (Psychological Methods, 17, 78-99, 2012).  相似文献   

3.
Exploratory factor analysis (EFA) has become a common procedure in educational and psychological research. In the course of performing an EFA, researchers often base the decision of how many factors to retain on the eigenvalues for the factors. However, many researchers do not realize that eigenvalues, like all sample statistics, are subject to sampling error, which means that confidence intervals (CIs) can be estimated for each eigenvalue. In the present article, we demonstrate two methods of estimating CIs for eigenvalues: one based on the mathematical properties of the central limit theorem, and the other based on bootstrapping. References to appropriate SAS and SPSS syntax are included. Supplemental materials for this article may be downloaded from http://brm.psychonomic-journals.org/content/supplemental.  相似文献   

4.
Multinomial processing tree (MPT) models are a class of measurement models that account for categorical data by assuming a finite number of underlying cognitive processes. Traditionally, data are aggregated across participants and analyzed under the assumption of independently and identically distributed observations. Hierarchical Bayesian extensions of MPT models explicitly account for participant heterogeneity by assuming that the individual parameters follow a continuous hierarchical distribution. We provide an accessible introduction to hierarchical MPT modeling and present the user-friendly and comprehensive R package TreeBUGS, which implements the two most important hierarchical MPT approaches for participant heterogeneity—the beta-MPT approach (Smith & Batchelder, Journal of Mathematical Psychology 54:167-183, 2010) and the latent-trait MPT approach (Klauer, Psychometrika 75:70-98, 2010). TreeBUGS reads standard MPT model files and obtains Markov-chain Monte Carlo samples that approximate the posterior distribution. The functionality and output are tailored to the specific needs of MPT modelers and provide tests for the homogeneity of items and participants, individual and group parameter estimates, fit statistics, and within- and between-subjects comparisons, as well as goodness-of-fit and summary plots. We also propose and implement novel statistical extensions to include continuous and discrete predictors (as either fixed or random effects) in the latent-trait MPT model.  相似文献   

5.
Randomization tests are nonparametric statistical tests that obtain their validity by computationally mimicking the random assignment procedure that was used in the design phase of a study. Because randomization tests do not rely on a random sampling assumption, they can provide a better alternative than parametric statistical tests for analyzing data from single-case designs. In this article, an R package is described for use in designing single-case phase (AB, ABA, and ABAB) and alternation (completely randomized, alternating treatments, and randomized block) experiments, as well as for conducting statistical analyses on data gathered by means of such designs. The R code is presented in a step-by-step way, which at the same time clarifies the rationale behind single-case randomization tests.  相似文献   

6.
Confidence intervals (CIs) for means are frequently advocated as alternatives to null hypothesis significance testing (NHST), for which a common theme in the debate is that conclusions from CIs and NHST should be mutually consistent. The authors examined a class of CIs for which the conclusions are said to be inconsistent with NHST in within-subjects designs and a class for which the conclusions are said to be consistent. The difference between them is a difference in models. In particular, the main issue is that the class for which the conclusions are said to be consistent derives from fixed-effects models with subjects fixed, not mixed models with subjects random. Offered is mixed model methodology that has been popularized in the statistical literature and statistical software procedures. Generalizations to different classes of within-subjects designs are explored, and comments on the future direction of the debate on NHST are offered.  相似文献   

7.
In this study, we analyzed the validity of the conventional 80% power. The minimal sample size and power needed to guarantee non-overlapping (1-alpha)% confidence intervals for population means were calculated. Several simulations indicate that the minimal power for two means (m = 2) to have non-overlapping CIs is .80, for (1-alpha) set to 95%. The minimal power becomes .86 for 99% CIs and .75 for 90% CIs. When multiple means are considered, the required minimal power increases considerably. This increase is even higher when the population means do not increase monotonically. Therefore, the often adopted criterion of a minimal power equal to .80 is not always adequate. Hence, to guarantee that the limits of the CIs do not overlap, most situations require a direct calculation of the minimum number of observations that should enter in a study.  相似文献   

8.
MorePower 6.0 is a flexible freeware statistical calculator that computes sample size, effect size, and power statistics for factorial ANOVA designs. It also calculates relational confidence intervals for ANOVA effects based on formulas from Jarmasz and Hollands (Canadian Journal of Experimental Psychology 63:124–138, 2009), as well as Bayesian posterior probabilities for the null and alternative hypotheses based on formulas in Masson (Behavior Research Methods 43:679–690, 2011). The program is unique in affording direct comparison of these three approaches to the interpretation of ANOVA tests. Its high numerical precision and ability to work with complex ANOVA designs could facilitate researchers’ attention to issues of statistical power, Bayesian analysis, and the use of confidence intervals for data interpretation. MorePower 6.0 is available at https://wiki.usask.ca/pages/viewpageattachments.action?pageId=420413544.  相似文献   

9.
Principal covariate regression (PCOVR) is a method for regressing a set of criterion variables with respect to a set of predictor variables when the latter are many in number and/or collinear. This is done by extracting a limited number of components that simultaneously synthesize the predictor variables and predict the criterion ones. So far, no procedure has been offered for estimating statistical uncertainties of the obtained PCOVR parameter estimates. The present paper shows how this goal can be achieved, conditionally on the model specification, by means of the bootstrap approach. Four strategies for estimating bootstrap confidence intervals are derived and their statistical behaviour in terms of coverage is assessed by means of a simulation experiment. Such strategies are distinguished by the use of the varimax and quartimin procedures and by the use of Procrustes rotations of bootstrap solutions towards the sample solution. In general, the four strategies showed appropriate statistical behaviour, with coverage tending to the desired level for increasing sample sizes. The main exception involved strategies based on the quartimin procedure in cases characterized by complex underlying structures of the components. The appropriateness of the statistical behaviour was higher when the proper number of components were extracted.  相似文献   

10.
Loftus and Masson (1994) proposed a method for computing confidence intervals (CIs) in repeated measures (RM) designs and later proposed that RM CIs for factorial designs should be based on number of observations rather than number of participants (Masson & Loftus, 2003). However, determining the correct number of observations for a particular effect can be complicated, given that its value depends on the relation between the effect and the overall design. To address this, we recently defined a general number-of-observations principle, explained why it obtains, and provided step-by-step instructions for constructing CIs for various effect types (Jarmasz & Hollands, 2009). In this note, we provide a brief summary of our approach.  相似文献   

11.
The statistical power of a hypothesis test is closely related to the precision of the accompanying confidence interval. In the case of a z-test, the width of the confidence interval is a function of statistical power for the planned study. If minimum effect size is used in power analysis, the width of the confidence interval is the minimum effect size times a multiplicative factor φ. The index φ, or the precision-to-effect ratio, is a function of the computed statistical power. In the case of a t-test, statistical power affects the probability of achieving a certain width of confidence interval, which is equivalent to the probability of obtaining a certain value of φ. To consider estimate precision in conjunction with statistical power, we can choose a sample size to obtain a desired probability of achieving a short width conditional on the rejection of the null hypothesis.  相似文献   

12.
Interval estimates – estimates of parameters that include an allowance for sampling uncertainty – have long been touted as a key component of statistical analyses. There are several kinds of interval estimates, but the most popular are confidence intervals (CIs): intervals that contain the true parameter value in some known proportion of repeated samples, on average. The width of confidence intervals is thought to index the precision of an estimate; CIs are thought to be a guide to which parameter values are plausible or reasonable; and the confidence coefficient of the interval (e.g., 95 %) is thought to index the plausibility that the true parameter is included in the interval. We show in a number of examples that CIs do not necessarily have any of these properties, and can lead to unjustified or arbitrary inferences. For this reason, we caution against relying upon confidence interval theory to justify interval estimates, and suggest that other theories of interval estimation should be used instead.  相似文献   

13.
Recently, Kuppens, Van Mechelen, and Rijmen (2008) developed a method that allows researchers to examine and disentangle the contributions of the different possible sources of variability in sequential processes that underlie psychological outcomes or behaviors. Although this method may prove valuable for many research domains in the social sciences, its use may be limited by its statistical complexity and the effort and programming skills required. We present an R package, called Desequens, intended to make this method easily accessible to social science researchers. The tool does not require any knowledge of R, so that R laymen can easily apply the method to their data as well. We demonstrate the use of Desequens by means of a didactic example.  相似文献   

14.
15.
Null hypothesis significance testing (NHST) is undoubtedly the most common inferential technique used to justify claims in the social sciences. However, even staunch defenders of NHST agree that its outcomes are often misinterpreted. Confidence intervals (CIs) have frequently been proposed as a more useful alternative to NHST, and their use is strongly encouraged in the APA Manual. Nevertheless, little is known about how researchers interpret CIs. In this study, 120 researchers and 442 students—all in the field of psychology—were asked to assess the truth value of six particular statements involving different interpretations of a CI. Although all six statements were false, both researchers and students endorsed, on average, more than three statements, indicating a gross misunderstanding of CIs. Self-declared experience with statistics was not related to researchers’ performance, and, even more surprisingly, researchers hardly outperformed the students, even though the students had not received any education on statistical inference whatsoever. Our findings suggest that many researchers do not know the correct interpretation of a CI. The misunderstandings surrounding p-values and CIs are particularly unfortunate because they constitute the main tools by which psychologists draw conclusions from data.  相似文献   

16.
Large-sample confidence intervals (CI) for reliability, validity, and unattenuated validity are presented. The CI for unattenuated validity is based on the Bonferroni inequality, which relies on one CI for test-retest reliability and one for validity. Covered are four reliability-validity situations: (a) both estimates were from random samples; (b) reliability was from a random sample but validity was from a selected sample; (c) validity was from a random sample but reliability was from a selected sample; and (d) both estimates were from selected samples. All CIs were evaluated by using a simulation. CIs on reliability, validity, or unattenuated validity are accurate as long as selection ratio is at least 20% and selected sample size is 100 or larger. When selection ratio is less than 20%, estimators tend to underestimate their parameters.  相似文献   

17.
Confidence intervals for the mean function of the true proportion score ( x ), where andx respectively denote the true proportion and observed test scores, can be approximated by the Efron, Bayesian, and parametric empirical Bayes (PEB) bootstrap procedures. The similarity of results yielded by all the bootstrap methods suggests the following: the unidentifiability problem of the prior distributiong() can be bypassed with respect to the construction of confidence intervals for the mean function, and a beta distribution forg() is a reasonable assumption for the test scores in compliance with a negative hypergeometric distribution. The PEB bootstrap, which reflects the construction of Morris intervals, is introduced for computing predictive confidence bands for x. It is noted that the effect of test reliability on the precision of interval estimates varies with the two types of confidence statements concerned.The Authors are indebted to the Editor and anonymous reviewers for constructive suggestions and comments. The authors wish to thank Min-Te Chao and Cheng-Der Fuh for some useful suggestions at earlier stages of writing this paper.  相似文献   

18.
A recent paper by Wainer and Thissen has renewed the interest in Gini's mean difference,G, by pointing out its robust characteristics. This note presents distribution-free asymptotic confidence intervals for its population value,γ, in the one sample case and for the difference Δ=(γ 1?γ 2) in the two sample situations. Both procedures are based on a technique of jackknifingU-statistics developed by Arvesen.  相似文献   

19.
Calculating and graphing within-subject confidence intervals for ANOVA   总被引:1,自引:0,他引:1  
The psychological and statistical literature contains several proposals for calculating and plotting confidence intervals (CIs) for within-subjects (repeated measures) ANOVA designs. A key distinction is between intervals supporting inference about patterns of means (and differences between pairs of means, in particular) and those supporting inferences about individual means. In this report, it is argued that CIs for the former are best accomplished by adapting intervals proposed by Cousineau (Tutorials in Quantitative Methods for Psychology, 1, 42–45, 2005) and Morey (Tutorials in Quantitative Methods for Psychology, 4, 61–64, 2008) so that nonoverlapping CIs for individual means correspond to a confidence for their difference that does not include zero. CIs for the latter can be accomplished by fitting a multilevel model. In situations in which both types of inference are of interest, the use of a two-tiered CI is recommended. Free, open-source, cross-platform software for such interval estimates and plots (and for some common alternatives) is provided in the form of R functions for one-way within-subjects and two-way mixed ANOVA designs. These functions provide an easy-to-use solution to the difficult problem of calculating and displaying within-subjects CIs.  相似文献   

20.
In an effort to find accurate alternatives to the usual confidence intervals based on normal approximations, this paper compares four methods of generating second‐order accurate confidence intervals for non‐standardized and standardized communalities in exploratory factor analysis under the normality assumption. The methods to generate the intervals employ, respectively, the Cornish–Fisher expansion and the approximate bootstrap confidence (ABC), and the bootstrap‐t and the bias‐corrected and accelerated bootstrap (BCa). The former two are analytical and the latter two are numerical. Explicit expressions of the asymptotic bias and skewness of the communality estimators, used in the analytical methods, are derived. A Monte Carlo experiment reveals that the performance of central intervals based on normal approximations is a consequence of imbalance of miscoverage on the left‐ and right‐hand sides. The second‐order accurate intervals do not require symmetry around the point estimates of the usual intervals and achieve better balance, even when the sample size is not large. The behaviours of the second‐order accurate intervals were similar to each other, particularly for large sample sizes, and no method performed consistently better than the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号