首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the present investigation, the effects of spatial separation on the interstimulus onset intervals (ISOIs) that produce auditory and visual apparent motion were compared. In Experiment 1, subjects were tested on auditory apparent motion. They listened to 50-msec broadband noise pulses that were presented through two speakers separated by one of six different values between 0 degrees and 160 degrees. On each trial, the sounds were temporally separated by 1 of 12 ISOIs from 0 to 500 msec. The subjects were instructed to categorize their perception of the sounds as "single," "simultaneous," "continuous motion," "broken motion," or "succession." They also indicated the proper temporal sequence of each sound pair. In Experiments 2 and 3, subjects were tested on visual apparent motion. Experiment 2 included a range of spatial separations from 6 degrees to 80 degrees; Experiment 3 included separations from .5 degrees to 10 degrees. The same ISOIs were used as in Experiment 1. When the separations were equal, the ISOIs at which auditory apparent motion was perceived were smaller than the values that produced the same experience in vision. Spatial separation affected only visual apparent motion. For separations less than 2 degrees, the ISOIs that produced visual continuous motion were nearly equal to those which produced auditory continuous motion. For larger separations, the ISOIs that produced visual apparent motion increased.  相似文献   

2.
Adult subjects were presented with two auditory stimuli per trial, and their task was to decide which of the two was longer in duration. An adaptive psychophysical procedure was used. In Experiments 1, 2, and 4, the base duration was 50 msec, whereas in Experiment 3, the base duration was 1 sec. In Experiments 1, 2, and 4, it was found that filled intervals (continuous tones) were discriminated more accurately than empty intervals (with onset and offset marked by clicks). It was concluded that this difference was perceptual rather than cognitive in nature, since performance on filled and empty intervals was not affected by increasing cognitive load in a dual-task procedure (Experiment 2) but was affected by backward masking (Experiment 4). In contrast, the results of Experiment 3 showed that duration discrimination of filled auditory intervals of longer duration was cognitively influenced, since performance was impaired by increasing cognitive load. Implications for notions of perceptual processing and timing mechanisms tanderlying differences in duration discrimination with filled and empty intervals are discussed.  相似文献   

3.
Adult subjects were presented with two auditory stimuli per trial, and their task was to decide which of the two was longer in duration. An adaptive psychophysical procedure was used. In Experiments 1, 2, and 4, the base duration was 50 msec, whereas in Experiment 3, the base duration was 1 sec. In Experiments 1, 2, and 4, it was found that filled intervals (continuous tones) were discriminated more accurately than empty intervals (with onset and offset marked by clicks). It was concluded that this difference was perceptual rather than cognitive in nature, since performance on filled and empty intervals was not affected by increasing cognitive load in a dual-task procedure (Experiment 2) but was affected by backward masking (Experiment 4). In contrast, the results of Experiment 3 showed that duration discrimination of filled auditory intervals of longer duration was cognitively influenced, since performance was impaired by increasing cognitive load. Implications for notions of perceptual processing and timing mechanism underlying differences in duration discrimination with filled and empty intervals are discussed.  相似文献   

4.
In two experiments, we investigated time perception during apparent biological motion. Pictures of initial, intermediate, and final positions of a single movement were presented, with interstimulus intervals that were constant within trials but varied across trials. Movement paths were manipulated by changing the sequential order of body postures. Increasing the path length produced an increase in perceived movement velocity. To produce an implicit measure of apparent movement dynamics, we also asked participants to judge the duration of a frame surrounding the stimuli. Longer paths with higher apparent movement velocity produced shorter perceived durations. This temporal bias was attenuated for nonbody (Experiment 1) and inverted-body (Experiment 2) control stimuli. As an explanation for these findings, we propose an automatic top-down mechanism of biological-motion perception that binds successive body postures into a continuous perception of movement. We show that this mechanism is associated with velocity-dependent temporal compression. Furthermore, this mechanism operates on-line, bridging the intervals between static stimuli, and is specific to configural processing of body form.  相似文献   

5.
The effects of stimulus duration and spatial separation on the illusion of apparent motion in the auditory modality were examined. Two narrow-band noise sources (40 dB, A-weighted) were presented through speakers separated in space by 2.5 degrees, 5 degrees, or 10 degrees, centered about the subject's midline. The duration of each stimulus was 5, 10, or 50 msec. On each trial, the sound pair was temporally separated by 1 of 10 interstimulus onset intervals (ISOIs): 0, 2, 4, 6, 8, 10, 15, 20, 50, or 70 msec. Five subjects were tested in nine trial block; each block represented a particular spatial-separation-duration combination. Within a trial block, each ISOI was presented 30 times each, in random order. Subjects were instructed to listen to the stimulus sequence and classify their perception of the sound into one of five categories: single sound, simultaneous sounds, continuous motion, broken motion, or successive sounds. Each subject was also required to identify the location of the first-occurring stimulus (left or right). The percentage of continuous-motion responses was significantly affected by the ISOI [F(9,36) = 5.67, p less than .001], the duration x ISOI interaction [F(18,72) = 3.54, p less than .0001], and the separation x duration x ISOI interaction [F(36,144) = 1.51, p less than .05]. The results indicate that a minimum duration is required for the perception of auditory apparent motion. Little or no motion was reported at durations of 10 msec or less. At a duration of 50 msec, motion was reported most often for ISOIs of 20-50 msec.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In Experiment 1, the proposition that duration discrimination of filled auditory intervals is based on temporal information rather than on energy-dependent cues was tested in 64 naive subjects. The subjects were presented with two auditory stimuli at different levels of intensity within one trial, and had to decide which of the two was longer in duration. An adaptive psychophysical procedure was used. As a measure of performance, difference threshold estimates in relation to a 50-msec standard interval were computed. Duration discrimination showed no effect of energy values, indicating that the subjects’ discrimination was independent of stimulus intensity. The goal of Experiments 2A and 2B was to investigate the effects of practice on duration discrimination which, in addition, may provide an indirect test for the potential use of energy-dependent cues. Effects of practice on duration discrimination of filled (Experiment 2 A) and empty (Experiment 2B) intervals were studied in 6 subjects in each case, over 20 testing sessions. An adaptive psychophysical procedure that was similar to the one used in Experiment 1 was applied. Neither short-term effects of practice based on the first five testing sessions, nor long-term effects of practice based on the means of 4 consecutive weeks, could be demonstrated. The results of the present study suggest that duration discrimination of brief auditory intervals is based on temporal information and not on stimulus energy. Furthermore, implications for the notion of a very basic bio-logical timing mechanism underlying temporal processing of brief auditory intervals in the range of milliseconds are discussed.  相似文献   

7.

It has been suggested that judgments about the temporal–spatial order of successive tactile stimuli depend on the perceived direction of apparent motion between them. Here we manipulated tactile apparent-motion percepts by presenting a brief, task-irrelevant auditory stimulus temporally in-between pairs of tactile stimuli. The tactile stimuli were applied one to each hand, with varying stimulus onset asynchronies (SOAs). Participants reported the location of the first stimulus (temporal order judgments: TOJs) while adopting both crossed and uncrossed hand postures, so we could scrutinize skin-based, anatomical, and external reference frames. With crossed hands, the sound improved TOJ performance at short (≤300 ms) and at long (>300 ms) SOAs. When the hands were uncrossed, the sound induced a decrease in TOJ performance, but only at short SOAs. A second experiment confirmed that the auditory stimulus indeed modulated tactile apparent motion perception under these conditions. Perceived apparent motion directions were more ambiguous with crossed than with uncrossed hands, probably indicating competing spatial codes in the crossed posture. However, irrespective of posture, the additional sound tended to impair potentially anatomically coded motion direction discrimination at a short SOA of 80 ms, but it significantly enhanced externally coded apparent motion perception at a long SOA of 500 ms. Anatomically coded motion signals imply incorrect TOJ responses with crossed hands, but correct responses when the hands are uncrossed; externally coded motion signals always point toward the correct TOJ response. Thus, taken together, these results suggest that apparent-motion signals are likely taken into account when tactile temporal–spatial information is reconstructed.

  相似文献   

8.
In a series of three experiments, the effect of marker duration on temporal discrimination was evaluated with empty auditory intervals bounded by markers ranging from 3 to 300 msec or presented as a gap within a continuous tone. As a measure of performance, difference thresholds in relation to a base duration of 50 msec were computed. Performance on temporal discrimination was significantly better with markers ranging from 3 to 150 msec than with markers ranging from 225 to 300 msec or under the gap condition. However, within each range of marker duration (3–150 msec; 225–300 msec or gap) performance did not differ significantly. A fourth experiment provided evidence that the effect of marker duration cannot be explained in terms of marker-induced masking. A good approximation of the relationship between marker duration and temporal discrimination performance in the present experiments is a smooth step function, which can account for 99.3% of the variance of mean discrimination performance. Thus, the findings of the present study point to the conclusion that two different mechanisms are used in the processing of temporal information, depending on the duration of the auditory markers. The tradeoff point for the hypothetical shift from one timing mechanism to the other may be found at a marker duration of approximately 200 msec.  相似文献   

9.
The effects of stimulus duration and spatial separation on the illusion of apparent motion in the auditory modality were examined. Two narrow-band noise sources (40 dB, A-weighted) were presented through speakers separated in space by 2.5°, 5°, or 100, centered about the subject’s midline. The duration of each stimulus was 5, 10, or 50 msec. On each trial, the sound pair was temporally separated by 1 of 10 interstimulus onset intervals (ISOIs): 0, 2, 4, 6, 8, 10, 15, 20, 50, or 70 msec. Five subjects were tested in nine trial blocks; each block represented a particular spatial-separation-duration combination. Within a trial block, each ISOI was presented 30 times each, in random order. Subjects were instructed to listen to the stimulus sequence and classify their perception of the sound into one of five categories: single sound, simultaneous sounds, continuous motion, broken motion, or successive sounds. Each subject was also required to identify the location of the first-occurring stimulus (left or right). The percentage of continuous-motion responses was significantly affected by the ISOI [F(9,36) = 5.67,p < .001], the duration × ISOI interaction [F(18,72) = 3.54,p < .0001], and the separation × duration × ISOI interaction [F(36,144) = 1.51,p < .05]. The results indicate that a minimum duration is required for the perception of auditory apparent motion. Little or no motion was reported at durations of 10 msec or less. At a duration of 50 msec, motion was reported most often for ISOIs of 20–50 msec. The effect of separation appeared to be limited to durations and-ISOIs during which little motion was perceived.  相似文献   

10.
The percepts evoked by sequential stimulation of sites in close spatial proximity (<2.5 cm) on the face were studied. Both method-of-limits and magnitude-estimation procedures were used to identify and characterize alterations in the percepts produced by systematic changes in the temporal and spatial parameters of the sequence. Each site was stimulated by a vertically oriented row of miniature vibrating probes. Apparent motion was consistently perceived when the delay between the onsets of sequentially activated rows (interstimulus onset interval, or ISOI) fell within a relatively narrow range of values, the lower limit of which approximated 5 msec. Both the upper limit and the perceived smoothness and continuity of the motion percepts (goodness of motion) increased with the duration for which each row stimulated the skin over the range evaluated, 15–185 msec. For the successive activation of only two rows, goodness of motion was not influenced by changes in their separation from 0.4 to 2.5 cm. The ISOI values at which magnitude estimates of goodness of motion were highest increased with the duration for which each row stimulated the skin. As such, maximum goodness of motion decreased with increases in the apparent velocity of motion. When the number of sequentially activated rows was increased from two to four or more, the quality of the motion percepts improved. For the successive activation of multiple closely spaced rows, values of ISOI at which numerical estimates of goodness of motion were highest approximated integral fractions of the duration for which each row stimulated the skin. In this situation, the probes rose and fell in a regular, step-locked rhythm to simulate an edge-like or rectangular object moving across the skin. The goodness of motion so attained was relatively independent of the apparent velocity of motion.  相似文献   

11.
This article presents the results of three experiments on the discrimination of time intervals presented in sequences marked by brief visual signals. In Experiment 1A (continuous condition), the participants had to indicate whether, in a series of 2-4 intervals marked by 3-5 visual signals, the last interval was shorter or longer than the previous one(s). In Experiment 1B (discontinuous condition), the participants indicated whether, in a presentation of two series of 1-3 intervals, with each series being marked by 2-4 signals, the intervals of the second sequence were shorter or longer than those of the first. Whenever one, two, or three standard intervals were presented, the difference threshold was as high at 150 msec as it was at 300 msec with the continuous method but increased monotonically from 150 to 900 msec with the discontinuous method. With both methods, the increase was well described by Weber's law--the Weber fraction was roughly constant--between 600 and 900 msec (Experiment 2), whereas between 900 and 1,200 msec (Experiment 3), the Weber fraction increased.  相似文献   

12.
Audio-visual simultaneity judgments   总被引:3,自引:0,他引:3  
The relative spatiotemporal correspondence between sensory events affects multisensory integration across a variety of species; integration is maximal when stimuli in different sensory modalities are presented from approximately the same position at about the same time. In the present study, we investigated the influence of spatial and temporal factors on audio-visual simultaneity perception in humans. Participants made unspeeded simultaneous versus successive discrimination responses to pairs of auditory and visual stimuli presented at varying stimulus onset asynchronies from either the same or different spatial positions using either the method of constant stimuli (Experiments 1 and 2) or psychophysical staircases (Experiment 3). The participants in all three experiments were more likely to report the stimuli as being simultaneous when they originated from the same spatial position than when they came from different positions, demonstrating that the apparent perception of multisensory simultaneity is dependent on the relative spatial position from which stimuli are presented.  相似文献   

13.
The discrimination of short intervals of time, demarcated by a foveally presented spatially distinct double pulse of light, was studied under several conditions of pulse intensity, angular diameter, and duration. We defined temporal acuity as a measure of discrimination capacity in terms of d′ values. It is shown that the acuity mechanism uses largely integrated information—in the spatial and temporal domain, up to at least 56′ and 32 msec, respectively. Acuity increases slightly with increasing integrated pulse energy, but seems quite independent of the presence of an adapting field of appreciable brightness. Studies on the effect of the foveal site aimed at by the pulses of light have shown that temporal projections lead to significantly poorer acuity values than nasal projections. Monoptic and dichoptic stimulation, however, are fully equivalent.  相似文献   

14.
This article presents the results of three experiments on the discrimination of time intervals presented in sequences marked by brief visual signals. In Experiment 1A (continuous condition), the participants had to indicate whether, in a series of 2–4 intervals marked by 3–5 visual signals, the last interval was shorter or longer than the previous one(s). In Experiment 1B (discontinuous condition), the participants indicated whether, in a presentation of two series of 1–3 intervals, with each series being marked by 2–4 signals, the intervals of the second sequence were shorter or longer than those of the first. Whenever one, two, or three standard intervals were presented, the difference threshold was as high at 150 msec as it was at 300 msec with the continuous method but increased monotonically from 150 to 900 msec with the discontinuous method. With both methods, the increase was well described by Weber’s law&#x2014the Weber fraction was roughly constant&#x2014between 600 and 900 msec (Experiment 2), whereas between 900 and 1,200 msec (Experiment 3), the Weber fraction increased.  相似文献   

15.
Three experiments are reported on the tau and kappa effects, the dependence of judgments of distance upon duration (tau) and of judgments of duration upon distance (kappa). In Experiment 1, three lights in a horizontal sequence were used to define two temporal and two spatial intervals over a total duration of 160 msec. The subject was required to choose the shorter of either the two durations or the two distances. The results confirmed Collyer’s (1977) findings that the two effects are inconsistently observed across subjects when the display duration is brief. In Experiment 2, display duration was systematically manipulated from 160 to 1,500 msec. It is argued that relative temporal judgments should become easier as the total display duration is increased and that, hence, the kappa effect should become less marked. On the other hand, relative spatial judgments should become more difficult as the total duration of the display is increased, and the tau effect should become more marked. The data were in conformity with the hypothesis. In Experiment 3, data are presented for a tau experiment which fit the assumption that the effect depends upon a weighted average of distance and the expected distance which would be traversed in the given time at constant velocity.  相似文献   

16.
Tactile pattern recognition was studied by presenting pairs of alphabetic shapes in rapid succession at the same anatomical location, the subject being required on each trial to identify bath of the patterns. Experimental variables were the duration of each stimulus and the time between stimuli. Three aspects of the observed interaction were (1) an increase in letter reversals for very short interstimulus intervals; (2) a greater percentage of first-response errors for short-stimulus onset intervals and a greater percentage of second-response errors for long-stimulus onset intervals; and (3) a crossover in the first- and second-response error rates in the range of 100 to 200 msec. after the onset of the first stimulus. These results are consistent with some of the temporal properties of models proposed for analogous visual tasks.  相似文献   

17.
Humans were trained on two independent temporal discriminations, with correct choice dependent on the initial stimulus duration. In Experiment 1, the durations were 1.0 and 4.0 sec, with one set of choice stimuli, and 2.0 and 8.0 sec, with a different set of choice stimuli. The 2.0- and 4.0-sec values were selected to be the geometric mean of the two values in the other discrimination. In Experiment 2, the durations were 2.0 and 5.0 sec for one discrimination and 3.5 and 6.5 sec for the other. The 3.5- and 5.0-sec values were selected to be the arithmetic mean of the two values in the other discrimination. In both experiments, participants showed evidence for relational coding of the duration pairs. That is, the test durations were selected to be at the presumed bisection point (i.e., they should have produced indifferent choice), but instead the shorter test duration from the longer duration pair produced a “short” bias (in both experiments), whereas the longer duration from the shorter duration pair produced a “long” bias (in the second experiment). Results were similar to those from Zentall, Weaver, and Clement (2004) with pigeons.  相似文献   

18.
Auditory apparent motion under binaural and monaural listening conditions   总被引:1,自引:0,他引:1  
This investigation examined the ability of listeners to perceive apparent motion under binaural and monaural listening conditions. Fifty-millisecond broadband noise sources were presented through two speakers separated in space by either 10 degrees, 40 degrees, or 160 degrees, centered about the subject's midline. On each trial, the sources were temporally separated by 1 of 12 interstimulus onset intervals (ISOIs). Six listeners were asked to place their experience of these sounds into one of five categories (single sound, simultaneous sounds, continuous motion, broken motion, or successive sounds), and to indicate either the proper temporal sequence of presentation or the direction of motion, depending on whether or not motion was perceived. Each listener was tested at all spatial separations under binaural and monaural listening conditions. Motion was perceived in the binaural listening condition at all spatial separations tested for ISOIs between 20 and 130 msec. In the monaural listening condition, motion was reliably heard by all subjects at 10 degrees and 40 degrees for the same range of ISOIs. At 160 degrees, only 3 of the 6 subjects consistently reported motion. However, when motion was perceived in the monaural condition, the direction of motion could not be determined.  相似文献   

19.
The effect of brief auditory stimuli on visual apparent motion   总被引:1,自引:0,他引:1  
Getzmann S 《Perception》2007,36(7):1089-1103
When two discrete stimuli are presented in rapid succession, observers typically report a movement of the lead stimulus toward the lag stimulus. The object of this study was to investigate crossmodal effects of irrelevant sounds on this illusion of visual apparent motion. Observers were presented with two visual stimuli that were temporally separated by interstimulus onset intervals from 0 to 350 ms. After each trial, observers classified their impression of the stimuli using a categorisation system. The presentation of short sounds intervening between the visual stimuli facilitated the impression of apparent motion relative to baseline (visual stimuli without sounds), whereas sounds presented before the first and after the second visual stimulus as well as simultaneously presented sounds reduced the motion impression. The results demonstrate an effect of the temporal structure of irrelevant sounds on visual apparent motion that is discussed in light of a related multisensory phenomenon, 'temporal ventriloquism', on the assumption that sounds can attract lights in the temporal dimension.  相似文献   

20.
The blink reflex is modulated if a weak lead stimulus precedes the blink-eliciting stimulus. In two experiments, we examined the effects of the sensory modality of the lead and blink-eliciting stimuli on blink modulation. Acoustic, visual, or tactile lead stimuli were followed by an acoustic (Experiment 1) or an electrotactile (Experiment 2) blink-eliciting stimulus at lead intervals of -30, 0, 30, 60, 120, 240, 360, and 4,500 msec. The inhibition of blink magnitude at the short (60- to 360-msec) lead intervals and the facilitation of blink magnitude at the long (4,500-msec) lead interval observed for each lead stimulus modality was relatively unaffected by the blink-eliciting stimulus modality. The facilitation of blink magnitude at the very short (-30- to 30-msec) lead intervals was dependent on the combination of the lead and the blink-eliciting stimulus modalities. Modality specific and nonspecific processes operate at different levels of perceptual processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号