首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The authors examined postural asymmetries during quiet stance and while holding evenly or unevenly distributed loads. Right-hand dominant subjects preferentially loaded their right lower limb when holding no load or a load evenly distributed in both hands, but no differences in center of pressure (CoP) were observed between the left and right limbs. However, longer CoP displacement was observed under the preferentially loaded limb, which may reflect a functional asymmetry that allows quick movement of one limb in response to a potential perturbation. When a load was held only in the nondominant hand, sample entropy decreased in the left (loaded) limb but increased in the right (unloaded) limb, suggesting the unloaded foot compensated for a loss of control flexibility in the loaded foot.  相似文献   

2.
Self-perception of motion through visual stimulation may be important for adapting to locomotor conditions. Unilateral limb loading is a locomotor condition that can improve stability and reduce abnormal limb movement. In the present study, the authors investigated the effect of self-perception of motion through virtual reality (VR) on adaptation to unilateral limb loading. Healthy young adults, assigned to either a VR or a non-VR group, walked on a treadmill in the following 3 locomotor task periods--no load, loaded, and load removed. Subjects in the VR group viewed a virtual corridor during treadmill walking. Exposure to VR reduced cadence and muscle activity. During the loaded period, the swing time of the unloaded limb showed a larger increase in the VR group. When the load was removed, the swing time of the previously loaded limb and the stance time of the previously unloaded limb showed larger decrease and the swing time of the previously unloaded limb showed a smaller increase in the VR group. Lack of visual cues may cause the adoption of cautious strategies (higher muscle activity, shorter and more frequent steps, changes in the swing and stance times) when faced with situations that require adaptations. VR technology, providing such perceptual cues, has an important role in enhancing locomotor adaptation.  相似文献   

3.
Changing the foot position modifies the mechanical action exerted by the ankle extensor and flexor muscles over the body. We verified, in two groups of healthy subjects standing with the heels touching or apart, whether a 90° external rotation of the right leg and foot also changes the pattern of vestibulospinal reflexes elicited by electrical stimulation of the labyrinth. With the head oriented forward, leg rotation did not modify the labyrinthine-driven displacements of the center of pressure (CoP). When the head was rotated in the horizontal plane, either to the right or to the left, the CoP displacement increased along the y axis in all subjects. Changes in the x component in most instances appropriate to preserve unmodified the direction of body sway elicited by the stimulus were observed. Right leg rotation increased the basal EMG activity of ankle extensors and flexors on the left side, while the right side activity was unaffected. The EMG responses to labyrinthine stimulation were modified only on the left side, in a way appropriate to correct the effects of the altered torque pattern exerted on the body by right leg muscles. It appears, therefore, that somatosensory signals related to leg rotation and/or copy of the corresponding voluntary motor commands modify the pattern of vestibulospinal reflexes and maintain the postural response appropriate to counteract a body sway in the direction inferred by labyrinthine signals.  相似文献   

4.
Huh CY 《Brain and cognition》2004,55(2):322-324
The present study examined the interaction between limb movements in space. The amount of interaction was measured by how much moving one limb affected the movement of another limb. Participants were 24 right-handed university students (19 female, mean age=19 years). The task was to draw lines with the right hand while moving another limb in lines or circles of different sizes. Significant coupling effects were found between both homologous and non-homologous limbs. Movement of the right hand was most strongly affected by the left hand, less by the right foot, and least by the left foot, consistent with the functional cerebral distance model. This effect of limb was observed only in the major dimension along which movement was not restrained. Both the limb and dimension effects were reduced when the trajectory of motion decreased in size.  相似文献   

5.
The purpose of this study was to investigate the effects of asymmetrical loading on the intersegmental dynamics of the swing phase. Participants were asked to walk on a treadmill for 20 min under three loading conditions: (a) unloaded baseline, (b) 2 kg attached to the dominant limb’s ankle, and (c) post-load, following load removal. Sagittal plane motion data of both legs were collected and an intersegmental dynamics analysis of each swing phase was performed. Comparisons of steady-state responses across load conditions showed that absolute angular impulses of the loaded limb’s hip and knee increased significantly after load addition, and returned to baseline following load removal. Unloaded leg steady-state responses were not different across load conditions. However, after a change in leg inertia both legs experienced a period of adaptation that lasted approximately 40 strides before a steady state walking pattern was achieved. These findings suggest that the central nervous system refined the joint moments over time to account for the altered limb inertia and to maintain the underlying kinematic walking pattern. Maintaining a similar kinematic walking pattern resulted in altered moment profiles of the loaded leg, but similar moment profiles of the unloaded leg compared with the unloaded baseline condition.  相似文献   

6.
During walking our balance is maintained by muscle action. In part these muscle actions automatically respond to the imbalance. This paper considers responses to balance perturbations in muscles around the ankle, peroneus longus (PL), tibialis anterior (TA) and soleus (SO). It is investigated if their action is related to previously observed balance mechanisms: the ‘braking reaction’ and the mediolateral ankle strategy.Subjects walked on a treadmill and received pushes to the left and pulls to the right in various phases of the gait cycle. Muscle actions were divided into medium latency R1 (100–150 ms), long latency R2 (170–250 ms), and late action R3 (270–350 ms). Short latency responses, before 100 ms, were not observed but later responses were prominent. With inward perturbations (e.g. pushes to the left shortly before or during stance of the right foot) responses in RPL were seen. The forward roll-over of the CoP was briefly stalled in mid stance, so that the heel was not lifted. Stance was shortened. With outward perturbations, pushes to the left shortly before or during stance of the left foot, responses in all three muscles, LTA, LSO, and LPL were seen. Our interpretation is that these muscle activations induce a ‘braking reaction’ but could also contribute to the ‘mediolateral ankle strategy’. The resultant balance correction is small but fast, and so diminishes the need for later corrections by the stepping strategy.  相似文献   

7.
Integrity of both cerebral hemispheres is required to control in-phase or anti-phase coupling of ipsilateral hand and foot oscillations, as shown by the impairment of these tasks when performed on the healthy side of hemiplegic patients. On this basis, coupling of hand–foot movements was analysed in a right-handed subject (ME) who underwent a total resection of the corpus callosum. Oscillations of the prone hand and foot, paced by a metronome at different frequencies, as well as EMG activity in extensor carpi radialis (ECR) and tibialis anterior (TA) muscles were analysed by measuring the average phase difference between the hand and foot movements and EMG cycles.

ME performed in-phase movements (right-hand extension coupled to right-foot dorsal flexion) at frequencies up to 3 Hz, though the hand cycle progressively lagged the foot cycle as the frequency increased. At 3 Hz the hand lag reached −142° (as compared to about 25° in healthy subjects). The lag increased even further after application of an inertial load to the hand, reaching 180° at 1.8 Hz (about 50° in healthy subjects). ME's hand lag is caused by the lack of any anticipatory reaction in hand movers. In contrast to healthy subjects, which activate the ECR earlier than the TA when the frequency increases, ME activated the ECR later than TA at all frequencies higher than 0.9 Hz.

Anti-phase movements (hand extension coupled to foot plantar flexion) were performed only upto 1 Hz in unloaded conditions. At 0.6 Hz, movements were in tight phase-opposition (3°), but at 1 Hz, the hand lag reached −34° because of a delayed ECR activation. After hand loading ME was unable to couple movements in anti-phase. In contrast, normal subjects maintain a tight anti-phase coupling up to 2.0 Hz, both with an unloaded or loaded hand. Similar deficits were observed by ME when performing in-phase and anti-phase coupling on the left side, as well as when he was blindfolded.

In normal subjects, an anticipated muscular activation of hand movers compensates for hand loading. Since this compensation must depend on monitoring the hand delay induced by loading, the absence in ME of such compensatory reaction suggests that callosal division had apparently compromised the mechanisms sustaining feedback compensation for differences in the biomechanical limb properties. They also confirm and reinforce the idea that elaboration of the afferent message, aiming at controlling the phase of the movement association, needs the co-operation of both cerebral hemispheres.  相似文献   


8.
Investigation of manual actions has supported the proposition that the right and left cerebral hemispheres have complementary specializations relevant for movement control. To test the extent to which hemisphere specialization affect lower limb control, we compared performance between the legs in two motor tasks. A pedal aiming task was employed to test the notion of left hemisphere specialization for dynamic control, and unipedal balance was employed to test the notion of right hemisphere specialization for impedance control. Evaluation was conducted on young adults, in the contexts of separate (Experiment 1) and integrated (Experiment 2) performance of the probing tasks. Results from the aiming task showed equivalent movement linearity toward the target between the right and left feet across experiments. Analysis of unipedal balance revealed that increased stance stability when supported on the left leg was observed when performing simultaneously the aiming task with the contralateral foot, but not in the context of isolated task performance. These results are inconsistent with the proposition of left hemisphere specialization for dynamic control in the lower limbs, and suggest that specialization of the right hemisphere for impedance control can be observed in balance control when stance is associated with voluntary movements of the contralateral lower limb.  相似文献   

9.
An experiment was conducted to compare the effects of bilateral and unilateral stance on postural fluctuations and intralimb coordination during active balance control. Fifteen participants stood bilaterally and unilaterally while conducting a pointing task with an outstretched arm. Excursion of center of foot pressure (CoP) and limb movements were recorded with a force plate and eight dual-axis accelerometers, respectively. Compared to bilateral stance, unilateral stance resulted in wider CoP trajectories and greater postural fluctuations, especially in the lower limbs. The limb-dependent postural fluctuations during unilateral stance were associated with an increased coupling between the upper limb segments and a decreased coupling between the segments of the stance leg. Unilateral stance further resulted in greater regularity and spectral changes in postural fluctuations of the trunk and lower limb due to increased central oscillations (8-15 Hz). The observed structural differences in postural fluctuations between unilateral and bilateral stance strongly suggested that the postural control system modulates joint stiffness in a stance-dependent manner. Probably, in unilateral stance, attentive control was shifted to the stance leg at the expense of increasing arm stiffness to reduce movement redundancy.  相似文献   

10.
A limb’s initial position is often biased to the right of the midline during activities of daily living. Given this specific initial limb position, visual cues of the limb become first available to the ipsilateral eye relative to the contralateral eye. The current study investigated online control of the dominant limb as a function of having visual cues available to the ipsilateral or contralateral eye, in relation to the initial start position of the limb. Participants began each trial with their right limb on a home position to the left or right of the midline. After movement onset, a brief visual sample was provided to the ipsilateral or contralateral eye. On one third of the trials, an imperceptible 3 cm target jump was introduced. If visual information from the eye ipsilateral to the limb is preferentially used to control ongoing movements of the dominant limb, corrections for the target jump should be observed when movements began from the right of the body’s midline and vision was available to the ipsilateral eye. As expected, limb trajectory corrections for the target jump were only observed when participants started from the right home position and visual information was provided to the ipsilateral eye. We purport that such visuomotor asymmetry specialization emerges via neurophysiological developments, which may arise from naturalistic and probabilistic limb trajectory asymmetries.  相似文献   

11.
An experiment was designed to determine the impact of the force requirements on the production of bimanual 1:2 coordination patterns requiring the same (symmetric) or different (asymmetric) forces when Lissajous displays and goal templates are provided. The Lissajous displays have been shown to minimize the influence of attentional and perceptual constraints allowing constraints related to neural crosstalk to be more clearly observed. Participants (N = 20) were randomly assigned to a force condition in which the left or right limb was required to produce more force than the contralateral limb. In each condition participants were required to rhythmically coordinate the pattern of isometric forces in a 1:2 coordination pattern. Participant performed 13 practice trials and 1 test trial per force level. The results indicated that participants were able to effectively coordinate the 1:2 multi-frequency goal patterns under both symmetric and asymmetric force requirements. However, consistent distortions in the force and force velocity time series were observed for one limb that appeared to be associated with the production of force in the contralateral limb. Distortions in the force produced by the left limb occurred regardless of the force requirements of the task (symmetric, asymmetric) or whether the left or right limb had to produce more force than the contralateral limb. However, distinct distortions in the right limb occurred only when the left limb was required to produce 5 times more force than the right limb. These results are consistent with the notion that neural crosstalk can influence both limbs, but may manifest differently for each limb depending on the force requirements of the task.  相似文献   

12.
Much of the work related to lower extremity inertia manipulations has focused on temporal, kinematic and traditional inverse dynamics assessments during locomotion. Intersegmental dynamics is an analytical technique that provides further insights into mechanisms underlying linked-segment motion. The purpose of this study was to determine how intersegmental dynamics during the swing phase of walking are altered during asymmetrical lower extremity loading. Participants walked overground at a speed of 1.57 m s?1 with 0, 0.5, 1.0, and 2.0 kg attached to one foot. Net, interaction, gravitational, and muscle moments were computed. Moment magnitudes at joints of the loaded leg increased systematically with increasing load, whereas unloaded leg moments were unaffected by loading. With increasing load, relative contributions of interaction moments about the knee and hip and gravitational moment about the ankle increased (i.e., 21%, 8%, and 44% increases, respectively), whereas the relative contributions of muscle moments about all three joints declined (i.e., ?4%, ?13%, and ?8% decreases for the ankle, knee, and hip, respectively for unloaded vs. 2.0 kg). These results suggest that altered inertia properties of the limb not only affected the amount of muscular effort required to swing the leg, but also changed the nature of the interaction between segments.  相似文献   

13.
Two experiments examined the effect of concurrently holding 0, 2, 4, or 6 nouns in memory on the recognition of visual stimuli briefly presented to the left or right visual fields. When stimuli to be visually recognized were complex visuospatial forms it was found that a relatively easy memroy load of 2 or 4 nouns improved visual recognition accuracy on right visual field (left-hemisphere) trials relative to the no-memory condition; however, a more difficult memory load of 6 nouns decreased visual recognition accuracy to a level slightly below the no-memory condition. There were no effects of concurrent verbal memroy on visual form recognition on left visual field (right-hemisphere) trials. When the stimuli to be visually recognized were words it was found that a relatively easy memroy load of 2 or 4 nouns improved visual recognition accuracy and a more difficult load of 6 nouns decreased visual recognition accuracy on both left and right visual field trials. The complete pattern of results indicates that several factors including cerebral hemisphere specialization, stimulus codability, selective perceptual orientation, and selective cerebral hemisphere interference interact in systematic ways to produce overall visual laterality effects.  相似文献   

14.
Riek S 《Human movement science》2004,23(3-4):431-445
This experiment investigated whether the stability of rhythmic unimanual movements is primarily a function of perceptual/spatial orientation or neuro-mechanical in nature. Eight participants performed rhythmic flexion and extension movements of the left wrist for 30s at a frequency of 2.25 Hz paced by an auditory metronome. Each participant performed 8 flex-on-the-beat trials and 8 extend-on-the-beat trials in one of two load conditions, loaded and unload. In the loaded condition, a servo-controlled torque motor was used to apply a small viscous load that resisted the flexion phase of the movement only. Both the amplitude and frequency of the movement generated in the loaded and unloaded conditions were statistically equivalent. However, in the loaded condition movements in which participants were required to flex-on-the-beat became less stable (more variable) while extend-on-the-beat movements remained unchanged compared with the unload condition. The small alteration in required muscle force was sufficient to result in reliable changes in movement stability even a situation where the movement kinematics were identical. These findings support the notion that muscular constraints, independent of spatial dependencies, can be sufficiently strong to reliably influence coordination in a simple unimanual task.  相似文献   

15.
Healthy men (n = 42) and women (n = 45) who were right-handed and men (n = 21) and women (n = 20) who were left-handed were studied. Men's mean age was 21.1 +/- 3.5 yr. and women's 20.7 +/- 3.1 yr. These students in various faculties reported they were right- or left-handed. Then their hand and foot preferences (handedness and footedness) were ascertained by asking each of the subjects to perform 11 tasks for handedness and 9 tasks for footedness. A discriminate function analysis test showed that each of the 11 tasks used for assessing their self-reported handedness was significant, but, of the 9 tasks used for assessing self-reported footedness, only 7 were significant. Strength of the hand or foot played no role in reports of handedness or footedness. A combination of four tasks, such as pulling a door, pushing a door, holding an object, and hammering a nail, on which the maximum number of subjects performed with the right or left hand, depending upon their self-reported handedness, would be ideal for ascertaining handedness. A combination of three tasks, namely, kicking a football, pushing an object with the foot, and stamping on the ground, would be ideal for ascertaining footedness.  相似文献   

16.
GUIDED VISUAL SEARCH IS A LEFT-HEMISPHERE PROCESS IN SPLIT-BRAIN PATIENTS   总被引:1,自引:0,他引:1  
Abstract— Previous research has shown that split-brain (callosotomy) patients search through visual displays twice as fast as normal observers when items are divided evenly between visual hemifields, as though each disconnected hemisphere possessed its own attentional scanning system (Luck, Hillyard, Mangun, & Gazzaniga, 1989, 1994) Results from 3 split-brain patients in the present study indicate that the ability to limit search to a relevant subset of the visual display is lateralized to the left cerebral hemisphere. This ability to perform guided search was not shown in the right hemisphere, even when the search time in that hemisphere was superior to search time in the left Furthermore, guided search was observed for both hemifields in normal control observers. These findings suggest that, as with higher cognitive processes such as language, strategic visuospatial attentional processes are preferentially lateralized to the left cerebral hemisphere. The findings also imply that the callosum mediates guided search in the right hemisphere of normal subjects  相似文献   

17.
The assumption that young children who have established a preferred and consistent use of lateral limb control may have an advantage in motor skill competence over individuals who do not exhibit established dominant behaviors, was the focus of this investigation. The research identified the lateral foot preferences of 153 4-yr-olds and compared preference groups (right, nonestablished, left) with motor skill competence. Analysis indicated no statistically significant differences on the eight motor tasks among the three groups, however, right-footed children outperformed th subjects with nonestablished foot preference on six of the eight tasks. This speculation is in the direction predicted by previous researchers and demands further inquiry.  相似文献   

18.
The authors measured intermanual transfer in participants (N = 48) whose exposed or unexposed right or left hand was tested 1st after participants experienced prismatic displacement. Test order did not affect either participants' performance during prismatic exposure or the usual aftereffects, but transfer occurred only when the authors tested the exposed right hand 1st. Transfer did not occur, and proprioceptive shift for the exposed left limb decreased when the authors tested the unexposed right limb 1st. The present results suggest that transfer occurs during testing for aftereffects of prism exposure, but not during prism exposure itself, as researchers have previously assumed. Results are consistent with those of previous research that has shown that limb control is lateralized in opposite hemispheres and that the left hemisphere contains a spatial map only for the right limb.  相似文献   

19.
Action observation and action execution are tightly coupled on a neurophysiological and a behavioral level, such that visually perceiving an action can contaminate simultaneous and subsequent action execution. More specifically, observing a model in postural disequilibrium was shown to induce an increase in observers' body sway. Here we reciprocally questioned the role of observers' motor system in the contagion process by comparing participants' body sway when watching displays of antero-posterior vs. lateral imbalance. Indeed, during upright standing, biomechanical constraints differ along the antero-posterior (A-P) and medio-lateral (M-L) axes; hence an impact of observers' postural constraints on the contagion response would result in different reactions to both types of stimuli. In response to the displays, we recorded greater area of center of pressure (CoP) displacement when watching forward/backward compared to left/right imbalance. In addition, after normalizing A-P and M-L CoP displacements by a control condition (fixation cross), A-P CoP path length when viewing forward imbalance tended to be higher than M-L CoP path length when viewing imbalance to the left or right. These results indicate that postural contagion is promoted when the display is compatible with observers' motor stabilization strategy which is mainly oriented along the A-P axis. In terms of clinical application, this study brings new indications for adaptation of observational training devices in rehabilitation programs.  相似文献   

20.
It is known that the illusory displacement of a vibrated limb can be transferred to a nonvibrated contacted limb. The purpose of this study was to quantify and compare the transferred illusory displacements occurring in the intrapersonal and near-personal space. In two tasks, 8 male and 8 female blindfolded subjects estimated (1) the height of the left elbow and (2) the height of an external object located at the same height as the left elbow, by the proprioception of the right arm which was Subject to illusory displacement. If the internal representation of the left elbow in one's body schema could provide precise information of its static position independently of the proprioception of the right arm, the perceived displacement of the right arm might be smaller when influenced by proprioceptive information from the static left arm, than when in contrast instead with an object which is not a body part. There was no difference in the estimation of illusory displacement between male and female subjects and between right and left arms. No significant difference was observed between transferred displacements of the left elbow and the object. This means that the perception of limb position sensed by the proprioception of another limb can be distorted as easily as the perception of location of an external object. This suggests that the internal representation of static limb position is not enough to provide the correct information of current limb position in the absence of vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号