首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rats' bar-pressing was maintained by concurrent variable-interval schedules of reinforcement. A fixed-ratio of pulls on a chain (the changeover ratio) was required for switching between schedules. The first experiment employed equal variable-interval schedules and symmetrical changeover ratios. Increasing these ratios resulted in a decrease in the rate of switching between schedules and an increase in local response rate. In the second experiment, a range of asymmetrical changeover ratios was used with equal variable-interval schedules, and a preference was found for the schedule associated with the larger switching-into ratio. Both the distributions of responses and time between the two schedules deviated from those expected on the basis of obtained reinforcers. In the third experiment, the switching-out-of ratio was dependent on the amount of time spent in a variable-interval 2-minute schedule; a constant ratio permitted switching out of the alternative variable-interval 1-minute schedule. A strong preference was shown for the variable-interval 2-minute schedule. The fourth experiment used equal variable-interval schedules; one changeover ratio was varied while the second remained constant. The results failed to show systematic differences in local response rates immediately after a changeover.  相似文献   

2.
Four experiments examined the effects of increasing the number of food pellets given to hungry rats for a lever-press response. On a simple variable-interval 60-s schedule, increased number of pellets depressed response rates (Experiment 1). In Experiment 2, the decrease in response rate as a function of increased reinforcement magnitude was demonstrated on a variable-interval 30-s schedule, but enhanced rates of response were obtained with the same increase in reinforcement magnitude on a variable-ratio 30 schedule. In Experiment 3, higher rates of responding were maintained by the component of a concurrent variable-interval 60-s variable-interval 60-s schedule associated with a higher reinforcement magnitude. In Experiment 4, higher rates of response were produced in the component of a multiple variable-interval 60-s variable-interval 60-s schedule associated with the higher reinforcement magnitude. It is suggested that on simple schedules greater reinforcer magnitudes shape the reinforced pattern of responding more effectively than do smaller reinforcement magnitudes. This effect is, however, overridden by another process, such a contrast, when two magnitudes are presented within a single session on two-component schedules.  相似文献   

3.
Behavioral interactions in multiple variable-interval schedules   总被引:9,自引:9,他引:0       下载免费PDF全文
In Experiment I, two groups of four pigeons each were exposed to multiple schedules in which one component was always a variable-interval schedule with a mean interreinforcement interval of 30 or 180 seconds. The other component was either an equal variable-interval schedule or extinction. Response rates in the unchanged component always increased when reinforcement was no longer scheduled in the changed component, and decreased in seven of eight cases when the variable-interval schedule was re-introduced. The per cent rate change in the unchanged component was inversely related to the frequency of reinforcement and to the ongoing response rate in the unchanged component. Rate changes in the unchanged component were not consistently correlated with changes in any single feature of the relative-frequency interresponse-time distributions. In Experiment II, the same pigeons were exposed to variable-interval schedules and multiple variable-interval variable-interval schedules with equal mean interreinforcement intervals. Response rates were similar under both conditions.  相似文献   

4.
Pigeons were trained on three-component chain schedules in which the initial component was either a fixed-interval or variable-interval schedule. The middle and terminal components were varied among fixed-interval fixed-interval, variable-interval variable-interval, and an interdependent variable-interval variable-interval schedule in which the sum of the durations of the two variable-interval components was always equal to the sum of the fixed-interval fixed-interval components. At issue was whether the response rate in the initial component was controlled by its time to primary reinforcement or by the temporal parameters of the stimulus correlated with the middle terminal link. The fixed-interval initial-link schedule maintained much lower response rates than the variable-interval initial-link schedule regardless of the schedules in the middle and terminal links. Nevertheless, the intervening schedules played some role: With fixed-interval schedules in the initial links, response rates were consistently highest with independent variable-interval schedules in the middle and terminal links and intermediate with the interdependent variable-interval schedules; these initial-link differences were predicted by the response rates in the middle link of the chain. With variable-interval schedules in the initial links, response rates were lowest with the fixed-interval fixed-interval schedules following the initial link and were not systematically different for the two types of variable-interval variable-interval schedules. The results suggest that time to reinforcement itself accounts for little if any variance in initial-link responding.  相似文献   

5.
Pigeons' responding was maintained by two concurrently available variable-interval reinforcement schedules. A fixed-ratio punishment schedule of timeout periods from the concurrent reinforcement schedules was arranged for responding during one of the variable-interval schedules. The greater the probability of a timeout after a response on the punished variable-interval schedule (the smaller the fixed ratio that produced timeout), the greater the decline in the relative punished response rates. Relative reinforcement rates remained invariant when relative response rates declined. Both behavioral contrast and induction effects were observed on the unpunished variable-interval schedule as a function of timeout punishment of the other schedule.  相似文献   

6.
Sustained behavioral contrast in children   总被引:1,自引:1,他引:0       下载免费PDF全文
Children were exposed to a multiple schedule involving equal variable-interval schedules in each of two components and a multiple schedule involving a variable-interval schedule in one component and an extinction schedule in the other. Response rates were equal in both components when each involved a variable-interval schedule. Response rates differed in the two components of the multiple variable-interval extinction schedule. Response rates were higher in the variable-interval schedule when the accompanying schedule was extinction than when it was variable interval. The increase in response rate in the variable-interval component, simultaneous with the decrease in response rate in the extinction component, illustrated sustained behavioral contrast, and was the first evidence of this phenomenon in children.  相似文献   

7.
Six pigeons were trained on multiple variable-interval schedules and performance was measured in the presence or absence of another variable-interval schedule (the common schedule) arranged concurrently with both components. Manipulations included varying the rate of reinforcement on the common schedule, leaving the common schedule unchanged while the components of the multiple schedule were varied, varying the multiple schedule components in the absence of the common schedule, and varying one component of the multiple schedule while the other component and the common schedule were unchanged. The normal rate-increasing and rate-decreasing effects of reinforcement rate increase were found, except that changing one multiple schedule component did not affect the response rate in the successively available common schedule component. Both concurrent and multiple schedule performance undermatched obtained reinforcement-rate ratios, but the degree of undermatching in multiple schedules was reliably greater. Allocation of responses between multiple schedule components was unaffected by the concurrent availability of reinforcement, and allocation of responses between concurrent schedules was unaffected by the successive availability of different reinforcement rates.  相似文献   

8.
Response rates are typically higher under variable-ratio than under variable-interval schedules of reinforcement, perhaps because of differences in the dependence of reinforcement rate on response rate or because of differences in the reinforcement of long interresponse times. A variable-interval-with-added-linear-feedback schedule is a variable-interval schedule that provides a response rate/reinforcement rate correlation by permitting the minimum interfood interval to decrease with rapid responding. Four rats were exposed to variable-ratio 15, 30, and 60 food reinforcement schedules, variable-interval 15-, 30-, and 60-s food reinforcement schedules, and two versions of variable-interval-with-added-linear-feedback 15-, 30-, and 60-s food reinforcement schedules. Response rates on the variable-interval-with-added-linear-feedback schedule were similar to those on the variable-interval schedule; all three schedules led to lower response rates than those on the variable-ratio schedules, especially when the schedule values were 30. Also, reinforced interresponse times on the variable-interval-with-added-linear-feedback schedule were similar to those on variable interval and much longer than those produced by variable ratio. The results were interpreted as supporting the hypothesis that response rates on variable-interval schedules in rats are lower than those on comparable variable-ratio schedules, primarily because the former schedules reinforce long interresponse times.  相似文献   

9.
Two differences between ratio and interval performance are well known: (a) Higher rates occur on ratio schedules, and (b) ratio schedules are unable to maintain responding at low rates of reinforcement (ratio “strain”). A third phenomenon, a downturn in response rate at the highest rates of reinforcement, is well documented for ratio schedules and is predicted for interval schedules. Pigeons were exposed to multiple variable-ratio variable-interval schedules in which the intervals generated in the variable-ratio component were programmed in the variable-interval component, thereby “yoking” or approximately matching reinforcement in the two components. The full range of ratio performances was studied, from strained to continuous reinforcement. In addition to the expected phenomena, a new phenomenon was observed: an upturn in variable-interval response rate in the midrange of rates of reinforcement that brought response rates on the two schedules to equality before the downturn at the highest rates of reinforcement. When the average response rate was corrected by eliminating pausing after reinforcement, the downturn in response rate vanished, leaving a strictly monotonic performance curve. This apparent functional independence of the postreinforcement pause and the qualitative shift in response implied by the upturn in variable-interval response rate suggest that theoretical accounts will require thinking of behavior as partitioned among at least three categories, and probably four: postreinforcement activity, other unprogrammed activity, ratio-typical operant behavior, and interval-typical operant behavior.  相似文献   

10.
The effect of increases in the rate of responding in one component of a multiple schedule upon the rate of responding in a second component was investigated. Pigeons were exposed to a multiple schedule where both components were initially variable-interval schedules having the same parameter value. After rate of key pecking stabilized, one component was changed to a schedule that differentially reinforced high rates of responding. Rate of reinforcement in this varied component was adjusted to remain equal to rate of reinforcement in the constant (variable-interval) component. Four of five pigeons showed a maintained increase in rate of responding during both the constant and varied components, even though rates of reinforcement did not change.  相似文献   

11.
Three pigeons received training on multiple variable-interval schedules with brief alternating components, concurrently with a fixed-interval schedule of food reinforcement on a second key. Fixed-interval performance exhibited typical increases in rate within the interval, and was independent of multiple-schedule responding. Responding on the multiple-schedule key decreased as a function of proximity to reinforcement on the fixed-interval key. The overall relative rate of responding in one component of the multiple schedule roughly matched the overall relative rate of reinforcement. Within the fixed interval, response rate during one multiple-schedule component was a monotonic, negatively accelerated function of response rate during the other component. To a first approximation, the data were described by a power function, where the exponent depended on the relative rate of reinforcement obtained in the two components. The relative rate of responding in one component of the multiple schedule increased as a function of proximity to fixed-interval reinforcement, and often exceeded the overall obtained relative rate of reinforcement. The form of the function relating response rates is discussed in relation to findings on rate-dependent effects of drugs, chaining, and the relation between response rate and reinforcement rate in single-schedule conditions.  相似文献   

12.
The literature was searched for information about the local rates of responding and reinforcement during concurrent schedules. The local rates of reinforcement obtained from the two components of a concurrent schedule were equal when a long-duration changeover delay was used and when many sessions were conducted, except when the two components provided different simple schedules. The local rates of responding were equal under some conditions, but they differed when one component provided a ratio and the other an interval schedule. Across schedules, local rates of reinforcement changed with changes in the schedule of reinforcement. Local rates of responding did not change with changes in change-over-delay duration but did with changes in the changeover ratio and with changes in the programmed rates of reinforcement. The results generally conform to the Equalizing and Melioration Principles and help to clarify current statements of the Matching Law. The results also suggest that changes in the local rates of responding and reinforcement may be orderly across schedules.  相似文献   

13.
This study focused on variables that may account for response-rate differences under variable-ratio (VR) and variable-interval (VI) schedules of reinforcement. Four rats were exposed to VR, VI, tandem VI differential-reinforcement-of-high-rate, regulated-probability-interval, and negative-feedback schedules of reinforcement that provided the same rate of reinforcement. Response rates were higher under the VR schedule than the VI schedule, and the rates on all other schedules approximated those under the VR schedule. The median reinforced interresponse time (IRT) under the VI schedule was longer than for the other schedules. Thus, differences in reinforced IRTs correlated with differences in response rate, an outcome suggestive of the molecular control of response rate. This conclusion was complemented by the additional finding that the differences in molar reinforcement-feedback functions had little discernible impact on responding.  相似文献   

14.
Key-pecking intermittently produced a set of brief exteroceptive stimulus changes under two-component multiple schedules of conditioned reinforcement. Throughout the study, free access to grain was concurrently provided on an intermittent basis via a variable-interval tape. Free food presentations scheduled by the tape were delivered if no peck had been emitted for 6 sec, and the brief stimulus changes produced by responding under the multiple schedules were those which accompanied food presentation. The second component of each multiple schedule was always associated with a 1-min, variable-interval schedule of conditioned reinforcement. The schedule associated with the first component was systematically varied and conditioned reinforcement was either absent (extinction) or programmed on a 1-, 3-, 6-, or 12-min variable-interval schedule. Under these conditions, rate of responding in the manipulated component decreased monotonically with a decrease in the frequency of conditioned reinforcement. In addition, contrast effects were often obtained in the constant, second component. These results are similar to those obtained with similar multiple schedules of primary reinforcement.  相似文献   

15.
Four experiments, each using the same six pigeons, investigated the effects of varying component durations and component reinforcement rates in multiple variable-interval schedules. Experiment 1 used unequal component durations in which one component was five times the duration of the other, and the shorter component was varied over conditions from 120 seconds to 5 seconds. The schedules were varied over five values for each pair of component durations. Sensitivity to reinforcement rate changes was the same at all component durations. In Experiment 2, both component durations were 5 seconds, and the schedules were again varied using both one and two response keys. Sensitivity to reinforcement was not different from the values found in Experiment 1. In Experiment 3, various manipulations, including body-weight changes, reinforcer duration changes, blackouts, hopper lights correlated with keylights, and overall reinforcement rate changes were carried out. No reliable increase in reinforcement sensitivity resulted from any manipulation. Finally, in Experiment 4, reinforcement rates in the two components were kept constant and unequal, and the component durations were varied. Shorter components produced significantly increased response rates normally in the higher reinforcement rate component, but schedule reversals at short component durations eliminated the response rate increases. The effects of component duration on multiple schedule performance cannot be interpreted as changing sensitivity to reinforcement nor to changing bias.  相似文献   

16.
In the first of two experiments, responses of two pigeons were maintained by multiple variable-interval, variable-ratio schedules of food reinforcement. Concurrent punishment was introduced, which consisted of a brief electric shock after each tenth response. The initial punishment intensities had no lasting effect upon responding. Then, as shock intensity increased, variable-ratio response rates were suppressed more quickly than variable-interval response rates. When shock intensity decreased, variable-interval responding recovered more quickly, but the rates under both schedules eventually returned to their pre-punishment levels. In the second experiment, the following conditions were studied in three additional pigeons: (1) With each shock intensity in effect for a number of sessions, punishment shock intensity was gradually increased and decreased and responding was maintained by multiple variable-ratio, fixed-ratio schedules of food reinforcement; (2) Changes in punishment shock intensity as described above with responding maintained by either a variable-ratio or a fixed-ratio schedule, which were presented on alternate days; (3) Session-to-session changes in shock intensity with responding maintained by multiple variable-ratio, fixed-ratio schedules. Responding under the two schedules was suppressed to approximately the same extent by a particular shock intensity. Also, post-reinforcement pauses under the fixed-ratio schedule increased as response suppression increased.  相似文献   

17.
Pigeons were exposed to two different reinforcement schedules under different stimulus conditions in each of two daily sessions separated by 6 hr (Experiments 1 and 2) or in a single session (Experiment 3). Following this, either a fixed-interval (Experiment 1) or a variable-interval schedule (Experiments 2 and 3) was effected in both stimulus conditions. In the first two experiments, exposure to fixed-ratio or differential-reinforcement-of-low-rate schedules led to response-rate, but not pattern, differences in subsequent performance on fixed- or variable-interval schedules that persisted for up to 60 sessions. The effects of reinforcement-schedule history on fixed-interval schedule performance generally were more persistent. In Experiment 3, a history of high and low response rates in different components of a multiple schedule resulted in subsequent response-rate differences under identical variable-interval schedules. Higher response rates initially occurred in the component previously correlated with high response rates. For 3 of 4 subjects, the differences persisted for 20 or more sessions. Previous demonstrations of behavioral history effects have been confined largely to between-subject comparisons. By contrast, the present results demonstrate strong behavioral effects of schedule histories under stimulus control within individual subjects.  相似文献   

18.
The performances of five pigeons were studied under a variety of multiple fixed-interval schedules in which both component duration and reinforcement rate were varied. The three series of experimental conditions were: (a) when the ratio of component durations equalled the reciprocal of the ratio of component reinforcement rates; (b) when the component durations were equal; and (c) when the ratio of component durations equalled the ratio of component reinforcement rates. Relative response rates were related to relative reinforcement rates in the same manner as in multiple variable-interval schedules, but no effect of component duration was found.  相似文献   

19.
Changeover behavior and preference in concurrent schedules   总被引:2,自引:2,他引:0       下载免费PDF全文
Pigeons were trained on a multiple schedule of reinforcement in which separate concurrent schedules occurred in each of two components. Key pecking was reinforced with milo. During one component, a variable-interval 40-s schedule was concurrent with a variable-interval 20-s schedule; during the other component, a variable-interval 40-s schedule was concurrent with a variable-interval 80-s schedule. During probe tests, the stimuli correlated with the two variable-interval 40-s schedules were presented simultaneously to assess preference, measured by the relative response rates to the two stimuli. In Experiment 1, the concurrently available variable-interval 20-s schedule operated normally; that is, reinforcer availability was not signaled. Following this baseline training, relative response rate during the probes favored the variable-interval 40-s alternative that had been paired with the lower valued schedule (i.e., with the variable-interval 80-s schedule). In Experiment 2, a signal for reinforcer availability was added to the high-value alternative (i.e., to the variable-interval 20-s schedule), thus reducing the rate of key pecking maintained by that schedule but leaving the reinforcement rate unchanged. Following that baseline training, relative response rates during probes favored the variable-interval 40-s alternative that had been paired with the higher valued schedule. The reversal in the pattern of preference implies that the pattern of changeover behavior established during training, and not reinforcement rate, determined the preference patterns obtained on the probe tests.  相似文献   

20.
Responses on one key (the main key) of a two-key chamber produced food according to a second-order variable-interval schedule with fixed-interval schedule components. A response on a second key (the changeover key) alternated colors on the main key and provided a second independent second-order variable-interval schedule with fixed-interval components. The fixed-interval component on one variable-interval schedule was held constant at 8 sec, while the fixed interval on the other variable-interval schedule was varied from 0 to 32 sec. Under some conditions, a brief stimulus terminated each fixed interval and generated fixed-interval patterns; in other conditions, the brief stimulus was omitted. Relative response rate and relative time deviated substantially from scheduled relative reinforcement rate and, to a lesser extent, from obtained relative reinforcement rate under both brief-stimulus and no-stimulus conditions. Matching was observed with equal components on both schedules; with unequal components, increasingly greater proportions of time and responses than the matching relation would predict were spent on the variable-interval schedule containing the shorter component. Preference for the shorter fixed interval was typically more extreme under brief-stimulus than under no-stimulus schedules. The results limit the extension of the matching relation typically observed under simple concurrent variable-interval schedules to concurrent second-order variable-interval schedules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号