首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pendular mechanism does not act as a primary mechanism in uphill walking due to the monotonic behavior of the mechanical energies of the center of mass. Nevertheless, recent evidence shows that there is an important minimization of energy expenditure by the pendular mechanism during walking on uphill gradients. In this study, we analyzed the optimum speed (OPT) of loaded human walking and the pendulum-like determining variables (Recovery R, Instantaneous pendular re-conversion Rint, and Congruity percentage %Cong). Ten young men walked on a treadmill at five different speeds and at three different treadmill incline gradients (0, +7 and +15%), with and without a load carried in their backpacks. We used indirect calorimetry and 3D motion analysis, and all of the data were analyzed by computational algorithms. Rint increased at higher speeds and decreased with increasing gradient. R and %Cong decreased with increasing gradient and increased with speed, independent of load. Thus, energy conversion by the pendular mechanism during walking on a 15% gradient is supported, and although this mechanism can explain the maintenance of OPT at low walking speeds, the pendular mechanism does not fully explain the energy minimization at higher speeds.  相似文献   

2.
Previous work showed that subjects naturally adopt a walking speed which optimizes energy cost of locomotion and stability of stride; however, no studies have examined whether these criteria are affected by carrying an external load. The purpose of this study was to compare optimization characteristics during loaded or unloaded walking. Energy cost and stride characteristics were measured for 10 subjects with and without a load on the trunk of the body of 10% of the body weight during 4 sessions. The first 2 sessions represent free walking at 2.5, 3, 3.5, 4, 4.5, and 5 km x hr.(-1). The last sessions represent free vs forced walking at constant speed (preferred frequency and +/- 10 PF and +/-20% of preferred frequency). Results show an effect of load on energy cost of walking but no effect on the optimal speed for stability. Furthermore, when carrying a load the subject does not adopt systematically the speed that minimizes physiological cost. Our findings suggest the necessity to consider this effect to prevent gait disturbance and maintain the health benefits of walking.  相似文献   

3.
The forearms significantly contribute to the upper extremity movements and, consequently, whole-body responses during locomotion. The purpose of this study is to provide a more in-depth understanding of the mechanism controlling forearm movements during walking by comprehensively investigating the effects of the forearms on the lower and upper limb movements. Such an understanding can provide critical information for the design and control of robotic upper-limb prostheses. Twelve healthy young participants were recruited to compare their gait during (1) natural walking, (2) walking while wearing a pair of artificial passive forearms and having their actual forearms restrained by orthopedic braces, and (3) walking with only having their forearms restrained by the braces (i.e., no artificial forearms). While the passive forearms in condition 2 were to determine if the forearm movements were passively or actively controlled, condition 3 was to account for the effects of restraining the forearms in condition 2. The participants' lower-limb joint angles and spatiotemporal parameters remained unchanged across the three conditions while walking at their normal and fast self-selected gait speeds. However, significant decreases were observed in the shoulder and trunk angles, the interlimb coordination, and the shoulder-trunk correlations when walking with the artificial forearms. These observations were in tandem with the increased muscle activity of the biceps, trapeziuses, and posterior deltoids, which controlled the shoulder motion and trunk rotation during walking with the artificial forearms across both normal and fast self-selected speeds. Although not significant, the metabolic energy analysis of five participants revealed an increase during walking with artificial forearms. The results support the idea that the body actively controls the forearm movements through the shoulder and trunk rotations to mitigate the undesired disturbances induced by the passive forearm movements during locomotion.  相似文献   

4.
The current study investigated interlimb coordination in individuals with traumatic brain injury (TBI) during overground walking. The study involved 10 participants with coordination, balance, and gait abnormalities post-TBI, as well as 10 sex- and age-matched healthy control individuals. Participants walked 12 m under two experimental conditions: 1) at self-selected comfortable walking speeds; and 2) with instructions to increase the amplitude and out-of-phase coordination of arm swinging. The gait was assessed with a set of spatiotemporal and kinematic parameters including the gait velocity, step length and width, double support time, lateral displacement of the center of mass, the amplitude of horizontal trunk rotation, and angular motions at shoulder and hip joints in sagittal plane. Interlimb coordination (coupling) was analyzed as the relative phase angles between the left and right shoulders, hips, and contralateral shoulders and hips, with an ideal out-of-phase coupling of 180° and ideal in-phase coupling of 0°. The TBI group showed much less interlimb coupling of the above pairs of joint motions than the control group. When participants were required to increase and synchronize arm swinging, coupling between shoulder and hip motions was significantly improved in both groups. Enhanced arm swinging was associated with greater hip and shoulder motion amplitudes, and greater step length. No other significant changes in spatiotemporal or kinematic gait characteristics were found in either group. The results suggest that arm swinging may be a gait parameter that, if controlled properly, can improve interlimb coordination during overground walking in patients with TBI.  相似文献   

5.
The purpose of this study was to investigate the effects of asymmetrical loading on the intersegmental dynamics of the swing phase. Participants were asked to walk on a treadmill for 20 min under three loading conditions: (a) unloaded baseline, (b) 2 kg attached to the dominant limb’s ankle, and (c) post-load, following load removal. Sagittal plane motion data of both legs were collected and an intersegmental dynamics analysis of each swing phase was performed. Comparisons of steady-state responses across load conditions showed that absolute angular impulses of the loaded limb’s hip and knee increased significantly after load addition, and returned to baseline following load removal. Unloaded leg steady-state responses were not different across load conditions. However, after a change in leg inertia both legs experienced a period of adaptation that lasted approximately 40 strides before a steady state walking pattern was achieved. These findings suggest that the central nervous system refined the joint moments over time to account for the altered limb inertia and to maintain the underlying kinematic walking pattern. Maintaining a similar kinematic walking pattern resulted in altered moment profiles of the loaded leg, but similar moment profiles of the unloaded leg compared with the unloaded baseline condition.  相似文献   

6.
The authors investigated the modulation of gait during dark adaptation. Twenty-five women (mean age = 72 years, SD = 5 years) walked back and forth on an arbitrarily uneven walkway during normal lighting at speeds ranging from slow to fast. Participants then performed 20 trials at preferred speed after sudden reduction of lighting; the authors compared those trials with point estimates at equivalent speeds representing normal lighting. The authors estimated speed, cadence, mediolateral trunk acceleration, and mediolateral interstep trunk-acceleration variability for each trial. Participants compensated for sudden reduction of lighting by reducing their walking speed. Compared with performance at equivalent speeds during normal lighting, cadence, trunk acceleration, and interstep trunk-acceleration variability initially increased. All variables showed an asymptotic approximation toward normal values during 60-90 s of walking in subdued lighting. The authors suggest that the sudden transition from normal to marginal lighting, rather than marginal lighting itself, may challenge locomotor control.  相似文献   

7.
Research has shown that preferred walking speed results in a minimization of the cost of transport on flat surfaces. However, it has also been shown that over non-smooth surfaces other variables, such as stability, are necessary for task completion increasing the cost of transport. The purpose of this research was to investigate the effect of incline walking on the cost of transport, assessing the effect of raising the center of mass as a potential variable affecting preferred walking speed, such that the cost of transport is no longer minimized. 12 healthy, college-aged male participants completed walking trials on a treadmill at inclines of 0%, 5%, 10%, 15%, and 20% at three different continuous speeds (1mph, 2mph and 3mph) and a preferred walking speed for 4–5 min. Cost of transport was calculated using the oxygen consumption collected during the last minute of each stage. Up to 20% incline, the cost of transport was lowest on each incline for the preferred walking speed trials. On inclines greater than 20%, many participants were unable to complete the task with respiratory exchange ratios less than 1.0. We conclude that inclines up to 20% do not induce an alternative challenge affecting the established relationship that humans prefer to walk at speeds that minimize the cost of transport despite the increased need to raise the center of mass.  相似文献   

8.
The purpose of this study was to identify the movement characteristics associated with positive and negative emotions experienced during walking. Joy, contentment, anger, sadness, and neutral were elicited in 16 individuals, and motion capture data were collected as they walked while experiencing the emotions. Observers decoded the target emotions from side and front view videos of the walking trials; other observers viewed the same videos to rate the qualitative movement features using an Effort-Shape analysis. Kinematic analysis was used to quantify body posture and limb movements during walking with the different emotions. View did not affect decoding accuracy except for contentment, which was slightly enhanced with the front view. Walking speed was fastest for joy and anger, and slowest for sadness. Although walking speed may have accounted for increased amplitude of hip, shoulder, elbow, pelvis and trunk motion for anger and joy compared to sadness, neck and thoracic flexion with sadness, and trunk extension and shoulder depression with joy were independent of gait speed. More differences among emotions occurred with the Effort-Shape rather than the kinematic analysis, suggesting that observer judgments of Effort-Shape characteristics were more sensitive than the kinematic outcomes to differences among emotions.  相似文献   

9.
Patients with non-specific low back pain, or a similar disorder, may stiffen their trunk, which probably alters their walking coordination. To study the direct effects of increasing trunk stiffness, we experimentally increased trunk stiffness during walking, and compared the results with what is known from the literature about gait coordination with, e.g., low back pain. Healthy subjects walked on a treadmill at 3 speeds (0.5, 1.0 and 1.5 m/s), in three conditions (normal, while contracting their abdominal muscles, or wearing an orthopedic brace that limits trunk motions). Kinematics of the legs, thorax and pelvis were recorded, and relative Fourier phases and amplitudes of segment motions were calculated. Increasing trunk stiffness led to a lower thorax–pelvis relative phase, with both a decrease in thorax–leg relative phase, and an increase in pelvis–leg relative phase, as well as reduced rotational amplitude of thorax relative to pelvis. While lower thorax–pelvis relative phase was also found in patients with low back pain, higher pelvis–leg relative phase has never been reported in patients with low back pain or related disorders. These results suggest that increasing trunk stiffness in healthy subjects causes short-term gait coordination changes which are different from those seen in patients with back pain.  相似文献   

10.
The vertical excursion of the body center of mass (BCOM) was calculated using three different techniques commonly used by motion analysis laboratories. The sacral marker method involved estimating vertical BCOM motion by tracking the position of a reflective marker that was placed on the sacrum of subjects as they walked. The body segmental analysis technique determined the vertical motion of the BCOM from a weighted average of the vertical positions of the centers of mass of individual body segments for each frame of kinematic data acquired during the data trial. Anthropomorphic data from standard tables were used to determine the mass fractions and the locations of the centers of mass of each body segment. The third technique involved calculating BCOM vertical motion through double integration of force platform data. Data was acquired from 10 able-bodied, adult research subjects--5 males and 5 females--walking at speeds of 0.8, 1.2, 1.6, and 2.0 m/s. A repeated measures ANOVA indicated that at the slowest walking speed the vertical excursions calculated by all three techniques were similar, but at faster speeds the sacral marker significantly (p < 0.001) overestimated the vertical excursion of the BCOM compared with the other two methods. The body segmental analysis and force platform techniques were in agreement at all walking speeds. Discrepancies between the sacral marker method and the other two techniques were explained using a simple model; the reciprocal configuration of the legs during double support phase significantly raises the position of the BCOM within the trunk at longer step lengths, corresponding to faster walking speeds. The sacral marker method may provide a reasonable approximation of vertical BCOM motion at slow and freely selected speeds of able-bodied walking. However, the body segmental analysis or force platform techniques will probably yield better estimates at faster walking speeds or in persons with gait pathologies.  相似文献   

11.
Preferred walking speed (PWS) reflects the integrated performance of the relevant physiological sub-systems, including energy expenditure. It remains unclear whether the PWS during over-ground walking is chosen to optimize one’s balance control because studies on the effects of speed on the body’s balance control have been limited. The current study aimed to bridge the gap by quantifying the effects of the walking speed on the body’s center of mass (COM) motion relative to the center of pressure (COP) in terms of the changes and directness of the COM-COP inclination angle (IA) and its rate of change (RCIA). Data of the COM and COP were measured from fifteen young healthy males at three walking speeds including PWS using a motion capture system. The values of IAs and RCIAs at key gait events and their average values over gait phases were compared between speeds using one-way repeated measures ANOVA. With increasing walking speed, most of the IA and RCIA related variables were significantly increased (p < 0.05) but not for those of the frontal IA. Significant quadratic trends (p < 0.05) with highest directness at PWS were found in IA during single-limb support, and in RCIA during single-limb and double-limb support. The results suggest that walking at PWS corresponded to the COM-COP control maximizing the directness of the RCIAs over the gait cycle, a compromise between the effects of walking speed and the speed of weight transfer. The data of IA and RCIA at PWS may be used in future assessment of balance control ability in people with different levels of balance impairments.  相似文献   

12.
Primary school children perform parts of their everyday activities while carrying school supplies and being involved in attention-demanding situations. Twenty-eight children (8–10 years old) performed a 1-legged stance and a 10 m walking test under single- and dual-task situations in unloaded (i.e., no backpack) and loaded conditions (i.e., backpack with 20% of body mass). Results showed that load carriage did not significantly influence children's standing and walking performance (all p > .05), while divided attention affected all proxies of walking (all p < .001). Last, no significant load by attention interactions was detected. The single application of attentional but not load demand negatively affects children's walking performance. A combined application of both did not further deteriorate their gait behavior.  相似文献   

13.
Self-perception of motion through visual stimulation may be important for adapting to locomotor conditions. Unilateral limb loading is a locomotor condition that can improve stability and reduce abnormal limb movement. In the present study, the authors investigated the effect of self-perception of motion through virtual reality (VR) on adaptation to unilateral limb loading. Healthy young adults, assigned to either a VR or a non-VR group, walked on a treadmill in the following 3 locomotor task periods--no load, loaded, and load removed. Subjects in the VR group viewed a virtual corridor during treadmill walking. Exposure to VR reduced cadence and muscle activity. During the loaded period, the swing time of the unloaded limb showed a larger increase in the VR group. When the load was removed, the swing time of the previously loaded limb and the stance time of the previously unloaded limb showed larger decrease and the swing time of the previously unloaded limb showed a smaller increase in the VR group. Lack of visual cues may cause the adoption of cautious strategies (higher muscle activity, shorter and more frequent steps, changes in the swing and stance times) when faced with situations that require adaptations. VR technology, providing such perceptual cues, has an important role in enhancing locomotor adaptation.  相似文献   

14.
Backward slope walking was considered as a practical rehabilitation and training skill. However, its gait stability has been hardly studied, resulting in its limited application as a rehabilitation tool. In this study, the effect of walking direction and slope grade were investigated on the local dynamic stability of the motion of lower extremity joints and trunk segment during backward and forward upslope walking (BUW/FUW). The local divergence exponents (λS) of 16 adults were calculated during their BUW and FUW at grades of 0%, 5%, 10%, and 15%. Mean standard deviation over strides (MeanSD) was analyzed as their gait variability. Backward walking showed larger λS for the abduction-adduction and rotational angles of knee and ankle on inclined surface than forward walking, while λS for hip flexion-extension angle at steeper grades was opposite. No grade effect for any joint existed during BUW, while λS increased with the increasing grade during FUW. As to the trunk, walking direction did little impact on λS. Still, significant larger λS for its medial-lateral and vertical motion were found at the steeper grades during both FUW and BUW. Results indicate that during BUW, the backward direction may influence the stability of joint motions, while the trunk stability was challenged by the increasing grades. Therefore, BUW may be a training tool for the stability of both upper and lower body motion during gait.  相似文献   

15.
The authors investigated the modulation of gait during dark adaptation. Twenty-five women (mean age = 72 years, SD = 5 years) walked back and forth on an arbitrarily uneven walkway during normal lighting at speeds ranging from slow to fast. Participants then performed 20 trials at preferred speed after sudden reduction of lighting; the authors compared those trials with point estimates at equivalent speeds representing normal lighting. The authors estimated speed, cadence, mediolateral trunk acceleration, and mediolateral interstep trunk-acceleration variability for each trial. Participants compensated for sudden reduction of lighting by reducing their walking speed. Compared with performance at equivalent speeds during normal lighting, cadence, trunk acceleration, and interstep trunk-acceleration variability initially increased. All variables showed an asymptotic approximation toward normal values during 60-90 s of walking in subdued lighting. The authors suggest that the sudden transition from normal to marginal lighting, rather than marginal lighting itself, may challenge locomotor control.  相似文献   

16.
Much of the work related to lower extremity inertia manipulations has focused on temporal, kinematic and traditional inverse dynamics assessments during locomotion. Intersegmental dynamics is an analytical technique that provides further insights into mechanisms underlying linked-segment motion. The purpose of this study was to determine how intersegmental dynamics during the swing phase of walking are altered during asymmetrical lower extremity loading. Participants walked overground at a speed of 1.57 m s?1 with 0, 0.5, 1.0, and 2.0 kg attached to one foot. Net, interaction, gravitational, and muscle moments were computed. Moment magnitudes at joints of the loaded leg increased systematically with increasing load, whereas unloaded leg moments were unaffected by loading. With increasing load, relative contributions of interaction moments about the knee and hip and gravitational moment about the ankle increased (i.e., 21%, 8%, and 44% increases, respectively), whereas the relative contributions of muscle moments about all three joints declined (i.e., ?4%, ?13%, and ?8% decreases for the ankle, knee, and hip, respectively for unloaded vs. 2.0 kg). These results suggest that altered inertia properties of the limb not only affected the amount of muscular effort required to swing the leg, but also changed the nature of the interaction between segments.  相似文献   

17.
Most studies investigating trunk kinematics have not provided adequate quantification of spinal motion, resulting in a limited understanding of the healthy spine’s biomechanical behavior during gait. This study aimed at assessing spinal motion during gait in adolescents, adults and older individuals.Fourteen adolescents (10–18 years), 13 adults (19–35 years) and 15 older individuals (≥65 years) were included. Using a previously validated enhanced optical motion capture approach, sagittal and frontal plane spinal curvature angles and general trunk kinematics were measured during shod walking at a self-selected normal speed.Postural differences indicated that lumbar lordosis and thoracic kyphosis increase throughout adolescence and reach their peak in adulthood. The absence of excessive thoracic kyphosis in older individuals could be explained by a previously reported subdivision in those who develop excessive kyphosis and those who maintain their curve. Furthermore, adults displayed increased lumbar spine range of motion as compared to the adolescents, whereas the increased values in older individuals were found to be related to higher gait speeds. This dataset on the age-related kinematics of the healthy spine can serve as a basis for understanding pathological deviations and monitoring rehabilitation progression.  相似文献   

18.
We examined the association of mobility capacity with muscle thicknesses and echo intensities of the trunk and lower extremity muscles measured using an ultrasound imaging device in community-dwelling older adults. The participants were 57 community-dwelling older adults. Mobility capacity was assessed based on the measurement of usual and maximal walking speeds and timed up-and-go (TUG) time. Muscle thickness and echo intensity of the trunk and lower extremity muscles were measured using an ultrasound imaging device. Finally, sagittal spinal alignment was assessed based on the measurement of thoracic kyphosis, lumbar lordosis, and sacral anterior inclination angles in the standing position using a Spinal Mouse. Stepwise regression analysis showed that the tibialis anterior muscle thickness, tibialis posterior muscle echo intensity, and body weight were significant and independent factors of usual walking speed, with a coefficient of determination (R2) of 0.25. The thicknesses of the thoracic erector spinae and obliquus externus abdominis muscles were significant and independent factors of maximal walking speed (R2 = 0.26). Moreover, only age was a significant and independent factor for TUG time (R2 = 0.10). The results of this study suggested associations 1) between slow usual walking speed and low tibialis anterior muscle thicknesses and high echo intensity of the tibialis posterior muscle and 2) between slow maximal walking speed and low thoracic erector spinae and obliquus externus abdominis thicknesses in community-dwelling older adults.  相似文献   

19.
Walk ratio, defined as step length divided by cadence, indicates the coordination of gait. During free walking, deviation from the preferential walk ratio may reveal abnormalities of walking patterns. The purpose of this study was to examine the impact of rhythmic auditory cueing (metronome) on the neuromotor control of gait at different walking speeds. Forty adults (mean age 26.6 ± 6.0 years) participated in the study. Gait characteristics were collected using a computerized walkway. In the preferred walking speed, there was no significant difference in walk ratio between uncued (walk ratio = .0064 ± .0007 m/steps/min) and metronome-cued walking (walk ratio = .0064 ± .0007 m/steps/min; p = .791). A higher value of walk ratio at the slower speed was observed with metronome-cued (walk ratio = .0071 ± .0008 m/steps/min) compared to uncued walking (walk ratio = .0068 ± .0007 m/steps/min; p < .001). The walk ratio was less at faster speed with metronome-cued (walk ratio = .0060 ± .0009 m/steps/min) compared to uncued walking (walk ratio = .0062 ± .0009 m/steps/min; p = .005). In healthy adults, the metronome cues may become an attentional demanding task, and thereby disrupt the spatial and temporal integration of gait at nonpreferred speeds.  相似文献   

20.
Walking is one of the fundamental forms of human gross motor activity in which spatiotemporal movement coordination can occur. While considerable body of evidence already exists on pedestrian movement coordination while walking in pairs, little is known about gait control while walking in more complex topological arrangements. To this end, this study provides some of the first evidence of spontaneous gait synchronisation while walking in a group. Nine subjects covered the total distance of 40 km at different speeds while assembled in a three-by-three formation. Two experimental protocols were applied in which the subjects were either not specifically asked to or specifically asked to synchronise their gait. To obtain results representative from the point of view of gait control, the movement coordination was quantified using the indirectly measured vertical component of ground reaction force, based on output from a network of wireless motion monitors. Bivariate phase difference analysis was conducted using wavelet transform, synchronisation strength measures derived from Shannon entropy, and circular statistics. A fundamental relationship describing the influence of the group walking speed on individuals’ pacing frequency was established, showing a positive correlation different from that previously reported for walking in solitude. A positive correlation was found between the average synchronisation strength within a group and group’s walking speed. The most persistent coordination patterns were identified for pedestrians walking front-to-back and side-by-side. Overall, the spontaneous gait synchronisation while walking in a group is relatively weak, well below the levels reported for walking in pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号