首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study addresses attentional effects in dichotic listening (DL) to consonant-vowel syllables. Previous research has shown that ear advantages in DL are modulated by biased attention to either the left or the right ear. Attentional effects in DL can be the result of two processes: facilitation of reports from the attended ear, or suppression of intrusions from the nonattended ear. Sixty-two students were tested with DL under three different task instructions: nonforced (divided) attention, attention forced to the right ear, and attention forced to the left ear. The main finding was inhibition of intrusions from the nonattended ear, combined with the facilitation of the correct reports from the attended ear during the two forced-attention conditions, compared with the nonforced condition. The results are discussed in relation to right hemisphere processing of dichotic input, and that attention may activate subcortically biased asymmetries which suppress input from the nonattended channel.  相似文献   

2.
Twelve sleep-deprived and 13 non-deprived Navy cadets were tested with the dichotic listening procedure for effects of sleep deprivation on hemispheric asymmetry and sustained attention. Consonant-vowel syllables were presented to the subjects in three different conditions, a divided (non-forced) attention condition, a forced right ear and a forced left ear attention condition. In the two forced attention conditions the subjects were instructed to focus attention only on the right or left ear stimulus. The results showed an expected right ear advantage for both groups during the non-forced and forced right attention conditions, indicating superior left hemisphere processing. During the forced left attention condition, the sleep-deprived subjects showed no ear advantage at all, while the non-deprived subjects showed an expected left ear advantage. The results are discussed within a theoretical framework of a dual process model, where sleep deprivation disrupts the ability to sustain attention, caused by a temporary failure of the right hemisphere's top-down (instruction-driven) processing to override the left hemisphere's bottom-up (stimulus-driven) processing.  相似文献   

3.
This study examined the relationship between trait impulsivity and cognitive control, as measured by the Barratt Impulsiveness Scale (BIS) and a focused attention dichotic listening to words task, respectively. In the task, attention was manipulated in two attention conditions differing in their cognitive control demands: one in which attention was directed to one ear at a time for a whole block of trials (blocked condition) and another in which attention was switched pseudo-randomly between the two ears from trial to trial (mixed condition). Results showed that high impulsivity participants exhibited more false alarm and intrusion errors as well as a lesser ability to distinguish between stimuli in the mixed condition, as compared to low impulsivity participants. In the blocked condition, the performance levels of the two groups were comparable with respect to these measures. In addition, total BIS scores were correlated with intrusions and laterality index in the mixed but not the blocked condition. The findings suggest that high impulsivity individuals may be less prone to attentional difficulties when cognitive load is relatively low. In contrast, when attention switching is involved, high impulsivity is associated with greater difficulty in inhibiting responses and resolving cognitive conflict than is low impulsivity, as reflected in error-prone information processing. The conclusion is that trait impulsivity in a non-clinical population is manifested more strongly when attention switching is required than during maintained attention. This may have important implications for the conceptualization and treatment of impulsivity in both non-clinical and clinical populations.  相似文献   

4.
Recent research has looked at whether the expectancy of an emotion can account for subsequent valence specific laterality effects of prosodic emotion, though no research has examined this effect for facial emotion. In the study here (n=58), we investigated this issue using two tasks; an emotional face perception task and a novel word task that involved categorising positive and negative words. In the face perception task a valence specific laterality effect was found for surprise (positive) and anger (negative) faces in the control but not expectancy condition. Interestingly, lateralisation differed for face gender, revealing a left hemisphere advantage for male faces and a right hemisphere advantage for female faces. In the word task, an affective priming effect was found, with higher accuracy when valence of picture prime and word target were congruent. Target words were also responded to faster when presented to the LVF versus RVF in the expectancy but not control condition. These findings suggest that expecting an emotion influences laterality processing but that this differs in terms of the perceptual/experience dimension of the task. Further, that hemispheric processing of emotional expressions appear to differ in the gender of the image.  相似文献   

5.
Lateralization of verbal and affective processes was investigated in P-dyslexic, L-dyslexic and normal children with the aid of a dichotic listening task. The children were asked to detect either the presence of a specific target word or of words spoken in a specific emotional tone of voice. The number of correct responses and reaction time were recorded. For monitoring words, an overall right ear advantage was obtained. However, further tests showed no significant ear advantage for P-types, and a right ear advantage for L-types and controls. For emotions, an overall left ear advantage was obtained that was less robust than the word-effect. The results of the word task are in support of previous findings concerning differences between P- and L-dyslexics in verbal processing according to the balance model of dyslexia. However, dyslexic children do not differ from controls on processing of emotional prosody although certain task variables may have affected this result.  相似文献   

6.
《Brain and cognition》2011,75(3):324-331
Recent research has looked at whether the expectancy of an emotion can account for subsequent valence specific laterality effects of prosodic emotion, though no research has examined this effect for facial emotion. In the study here (n = 58), we investigated this issue using two tasks; an emotional face perception task and a novel word task that involved categorising positive and negative words. In the face perception task a valence specific laterality effect was found for surprise (positive) and anger (negative) faces in the control but not expectancy condition. Interestingly, lateralisation differed for face gender, revealing a left hemisphere advantage for male faces and a right hemisphere advantage for female faces. In the word task, an affective priming effect was found, with higher accuracy when valence of picture prime and word target were congruent. Target words were also responded to faster when presented to the LVF versus RVF in the expectancy but not control condition.These findings suggest that expecting an emotion influences laterality processing but that this differs in terms of the perceptual/experience dimension of the task. Further, that hemispheric processing of emotional expressions appear to differ in the gender of the image.  相似文献   

7.
Lateralization of verbal and affective processes was investigated in P-dyslexic, L-dyslexic and normal children with the aid of a dichotic listening task. The children were asked to detect either the presence of a specific target word or of words spoken in a specific emotional tone of voice. The number of correct responses and reaction time were recorded. For monitoring words, an overall right ear advantage was obtained. However, further tests showed no significant ear advantage for P-types, and a right ear advantage for L-types and controls. For emotions, an overall left ear advantage was obtained that was less robust than the word-effect. The results of the word task are in support of previous findings concerning differences between P- and L-dyslexics in verbal processing according to the balance model of dyslexia. However, dyslexic children do not differ from controls on processing of emotional prosody although certain task variables may have affected this result.  相似文献   

8.
Twenty presentations of 6 emotional and 6 non-emotional words in mixed random orders were monaurally presented to the right or left ear. Using the left hand, subjects pushed one of two response buttons indicating type of word heard. Performance improved in later trials and emotional words were recognized more quickly regardless of ear presentation. No differences were associated with the separate ear presentations. Equivalent hemispheric performance indicates equal processing sensitivity to four-letter emotional and non-emotional nouns and substantiates the right hemisphere's verbal processing capability for simple nouns.  相似文献   

9.
In this article we examine whether the distribution of function across the right and left cerebral hemispheres for lexical processing is influenced by the global context within which words are presented. A review of previously published studies indicates that the ubiquitous right visual field (RVF)/left hemisphere advantage for word recognition may be reduced or eliminated for nouns, content words, or high image words, but only when such items are presented along with verbs, function words, or low image words. However, paradoxically, when the former items are presented in more homogeneous contexts, the RVF advantage is uniformly observed. We propose that the processing efficiency of a hemisphere for a given stimulus depends on that item's relation to the other stimuli provided, that is, the global context. This was examined in a visual half-field experiment that varied whether high and low image nouns were presented in homogeneous (blocked lists) or heterogeneous (mixed lists) contexts. An unvarying RVF advantage was observed for high image words in homogeneous contexts, but this advantage was eliminated when the same items were presented in heterogeneous contexts. We suggest that stimulus heterogeneity maximizes reliance on differing, but complementary, computational biases across hemispheres. Hence, the extent to which the left and right hemispheres are recruited for the recognition of individual word types can vary dynamically with variation in the stimulus environment.  相似文献   

10.
We examined hemispheric specialization in a lateralized Stroop facial identification task. A 2 (presentation side: left or right visual field [LVF or RVF])x2 (picture emotion: happy or angry)x3 (emotion of distractor word: happy, angry, or blank) factorial design placed the right hemispheric specialization for emotional expression processing and the left hemispheric specialization for verbal processing in conflict. Faces (from ) and emotion words were briefly displayed, and participants responded with keypresses corresponding to the picture emotion. As predicted, greater Stroop interference in identification accuracy was found with incongruent displays of facial expression in the LVF and emotion words in the RVF, and females exhibited less Stroop interference. Reaction times were moderated by emotion and visual field.  相似文献   

11.
Hemispheric specialization for processing different types of rapidly exposed stimuli was examined in a forced choice reaction time task. Four conditions of recognition were included: tacial emotion, neutral faces, emotional words, and neutral words. Only the facial emotion condition produced a significant visual field advantage (in favor of the left visual field), but this condition did not differ significantly from the neutral face condition's left visual field superiority. The verbal conditions produced significantly decreased latencies with RVF presentation, while the LVF presentation was associated with decreased latencies on the facial conditions. These results suggested that facial recognition and affective processing cannot be separated as independent factors generating right hemisphere superiority for facial emotion perception, and that task parameters (verbal vs. nonverbal) are important influences upon effects in studies of cerebral specialization.  相似文献   

12.
We examined the categorical nature of emotion word recognition. Positive, negative, and neutral words were presented in lexical decision tasks. Word frequency was additionally manipulated. In Experiment 1, “positive” and “negative” categories of words were implicitly indicated by the blocked design employed. A significant emotion–frequency interaction was obtained, replicating past research. While positive words consistently elicited faster responses than neutral words, only low frequency negative words demonstrated a similar advantage. In Experiments 2a and 2b, explicit categories (“positive,” “negative,” and “household” items) were specified to participants. Positive words again elicited faster responses than did neutral words. Responses to negative words, however, were no different than those to neutral words, regardless of their frequency. The overall pattern of effects indicates that positive words are always facilitated, frequency plays a greater role in the recognition of negative words, and a “negative” category represents a somewhat disparate set of emotions. These results support the notion that emotion word processing may be moderated by distinct systems.  相似文献   

13.
Children between the ages of 5 and 12 years were tested with dichotic listening tests utilizing single syllable words and random presentations of digits. They produced a higher prevalence of left ear dominance than expected, especially among right-handed children when tested with words. Whether more children demonstrate the LEA because of right hemisphere dominance for language or because there is less stability in ear advantage direction at younger ages cannot be fully resolved by this study. When ear advantages were measured by subtracting each child's lower score from the higher score without regard to right or left direction, an age-related trend toward lower measures of ear advantage was evident. This trend was greater for dichotic words than for dichotic digits. Structural factors that may be related to these results and possible influences of attention and verbal workload on the two kinds of dichotic stimuli are discussed.  相似文献   

14.
In this dichotic listening study, monosyllabic tasks were conducted in both English and Chinese to evaluate (1) the effects of processing two acoustically different languages and (2) the effects of bilingualism. One subject group included 28 bilingual speakers of English and Chinese, and a second group in cluded 29 monolingual English speakers. Three pairs of monosyllabic words were presented such that each ear received a different word at the same time. Twenty such sets in both languages were presented, with recall order irrelevant. The results show that the monolingual English subjects demonstrated a significant right ear advantage when identifying English words dichotically, suggesting a left hemisphere processing component. However, there was no ear effect when the English-Chinese speakers performed the dichotic listening tasks in both Chinese and English. It appears that, with the acquisition of a second language, right ear dominance seems to be replaced by interhemispheric processing.I would like to express my deep appreciation to John Ryalls for his efforts in the preparation of this article. Thanks also go to Stuart Davis, Steven Chin, Sven Anderson, David Pisoni, and two anonymous reviewers for their critical comments on previous drafts.  相似文献   

15.
Inhibition of return (IOR) refers to slowed responding to a target that appears in the same rather than in a different location as a preceding peripheral onset cue. This study examined IOR as a function of whether the peripheral onset cue was a word that participants were directed to remember or forget. Using a modified item-method directed forgetting paradigm, words appeared one at a time to the left or right, followed by a remember or forget instruction. A target dot was then presented either in the same peripheral location as the preceding word or in a different location; participants made a speeded response to localize this target. Confirming compliance with the memory instructions, recall tests that alternated with blocks of IOR trials (Experiment 1) revealed few intrusions of to-be-forgotten words, and a final recognition test (Experiments 1 and 3) revealed more hits for to-be-remembered words than for to-be-forgotten words. Reaction times to the target dot revealed greater magnitude IOR following to-be-forgotten words than following to-be-remembered words (Experiments 1 and 3). Moreover, when compared to baseline IOR values (Experiment 2), it appeared that this difference resulted from a magnification of IOR following forget instructions and a reduction in IOR following remember instructions. These results demonstrate the usefulness of IOR as an index of memorial processes and suggest that attentional orienting may play a role in the remembering and forgetting of words presented in peripheral visual locations.  相似文献   

16.
Perceptual asymmetries have been explained by structural, attentional bias and attentional advantage models. Structural models focus on asymmetries in the physical access information has to the hemispheres, whereas attentional models focus on asymmetries in the operation of attentional processes. A series of experiments was conducted to assess the contribution of attentional mechanisms to the right visual field (RVF) advantage found for word recognition. Valid, invalid and neutral peripheral cues were presented at a variety of stimulus onset asynchronies to manipulate spatial attention. Results indicated a significant RVF advantage and cueing effect. The effect of the cue was stronger for the left visual field than the RVF. This interaction supports the attentional advantage model which suggests that the left hemisphere requires less attention to process words. The attentional asymmetry is interpreted in terms of the different word processing styles used by the left and right hemispheres. These results have ramifications for the methodology used in divided visual field research and the interpretation of this research.  相似文献   

17.
To investigate the processing of emotional words by covert attention, threat-related, positive, and neutral word primes were presented parafoveally (2.2° away from fixation) for 150 ms, under gaze-contingent foveal masking, to prevent eye fixations. The primes were followed by a probe word in a lexical-decision task. In Experiment 1, results showed a parafoveal threat–anxiety superiority: Parafoveal prime threat words facilitated responses to probe threat words for high-anxiety individuals, in comparison with neutral and positive words, and relative to low-anxiety individuals. This reveals an advantage in threat processing by covert attention, without differences in overt attention. However, anxiety was also associated with greater familiarity with threat words, and the parafoveal priming effects were significantly reduced when familiarity was covaried out. To further examine the role of word knowledge, in Experiment 2, vocabulary and word familiarity were equated for low- and high-anxiety groups. In these conditions, the parafoveal threat–anxiety advantage disappeared. This suggests that the enhanced covert-attention effect depends on familiarity with words.  相似文献   

18.
To investigate the processing of emotional words by covert attention, threat-related, positive, and neutral word primes were presented parafoveally (2.2 degrees away from fixation) for 150 ms, under gaze-contingent foveal masking, to prevent eye fixations. The primes were followed by a probe word in a lexical-decision task. In Experiment 1, results showed a parafoveal threat-anxiety superiority: Parafoveal prime threat words facilitated responses to probe threat words for high-anxiety individuals, in comparison with neutral and positive words, and relative to low-anxiety individuals. This reveals an advantage in threat processing by covert attention, without differences in overt attention. However, anxiety was also associated with greater familiarity with threat words, and the parafoveal priming effects were significantly reduced when familiarity was covaried out. To further examine the role of word knowledge, in Experiment 2, vocabulary and word familiarity were equated for low- and high-anxiety groups. In these conditions, the parafoveal threat-anxiety advantage disappeared. This suggests that the enhanced covert-attention effect depends on familiarity with words.  相似文献   

19.
Although the right hemisphere is thought to be preferentially involved in visuospatial processing, the specialization of the two hemispheres with respect to object identification is unclear. The present study investigated the effects of hemifield presentation on object and word identification by presenting objects (Experiment 1) and words (Experiment 2) in a rapid visual stream of distracters. In Experiment 1, object images presented in the left visual field (i.e., to the right hemisphere) were identified with shorter display times. In addition, the left visual field advantage was greater for inverted objects. In Experiment 2, words presented in the right visual field (i.e., to the left hemisphere) under similar conditions were identified with shorter display times. These results support the idea that the right hemisphere is specialized with regard to object identification.  相似文献   

20.
Emotionally intoned sentences (happy, sad, angry, and neutral voices) were dichotically paired with monotone sentences. A left ear advantage was found for recognizing emotional intonation, while a simultaneous right ear advantage was found for recognizing the verbal content of the sentences. The results indicate a right hemispheric superiority in recognizing emotional stimuli. These findings are most reasonably attributed to differential lateralization of emotional functions, rather than to subject strategy effects. No evidence was found to support a hypothesis that each hemisphere is involved in processing different types of emotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号