首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Time perception performance was systematically investigated in adolescents with and without attention-deficit/hyperactivity disorder (ADHD). Specifically, the effects of manipulating modality (auditory and visual) and length of duration (200 and 1000 ms) were examined. Forty-six adolescents with ADHD and 44 controls were administered four duration discrimination tasks and two control tasks, and a set of standardized measures. Participants with ADHD had higher thresholds than controls on all of the duration discrimination tasks, with the largest effect size obtained on the visual 1000 ms duration discrimination task. No group differences were observed on the control tasks. Visual–spatial memory was found to be a significant predictor of visual and auditory duration discrimination at longer intervals (1000 ms) in the ADHD sample, whereas auditory verbal working memory predicted auditory discrimination at longer intervals (1000 ms) in the control sample. These group differences suggest impairments in basic timing mechanisms in ADHD.  相似文献   

2.
The present study was designed to investigate the influences of type of psychophysical task (two-alternative forced-choice [2AFC] and reminder tasks), type of interval (filled vs. empty), sensory modality (auditory vs. visual), and base duration (ranging from 100 through 1,000 ms) on performance on duration discrimination. All of these factors were systematically varied in an experiment comprising 192 participants. This approach allowed for obtaining information not only on the general (main) effect of each factor alone, but also on the functional interplay and mutual interactions of some or all of these factors combined. Temporal sensitivity was markedly higher for auditory than for visual intervals, as well as for the reminder relative to the 2AFC task. With regard to base duration, discrimination performance deteriorated with decreasing base durations for intervals below 400 ms, whereas longer intervals were not affected. No indication emerged that overall performance on duration discrimination was influenced by the type of interval, and only two significant interactions were apparent: Base Duration × Type of Interval and Base Duration × Sensory Modality. With filled intervals, the deteriorating effect of base duration was limited to very brief base durations, not exceeding 100 ms, whereas with empty intervals, temporal discriminability was also affected for the 200-ms base duration. Similarly, the performance decrement observed with visual relative to auditory intervals increased with decreasing base durations. These findings suggest that type of task, sensory modality, and base duration represent largely independent sources of variance for performance on duration discrimination that can be accounted for by distinct nontemporal mechanisms.  相似文献   

3.
Recent research has indicated that reentrant feedback from the contents of working memory can enhance neural representations and the perceptual strengths of matching stimuli in the visual field. However, whether the contents of working memory can also distort conscious experiences of perception remains unclear. Our present results show that the durations of perceptual stimuli matching the nontemporal representations in working memory tend to be perceived as longer than those of mismatching stimuli. This is the first demonstration that working memory can lead to distortions of time perception. Our findings are consistent with the ideas that the perceived duration of a stimulus depends on the magnitude of the neural responses to that stimulus in visual cortex and that there is a common system for representing both temporal and nontemporal magnitudes. We conclude that top-down modulation from the nontemporal contents of working memory distorts the perceptual experience of temporal duration.  相似文献   

4.
Arao H  Suetomi D  Nakajima Y 《Perception》2000,29(7):819-830
The duration of a short empty time interval (typically shorter than 300 ms) is often underestimated when it is immediately preceded by a shorter time interval. This illusory underestimation--time-shrinking--had been studied only with auditory temporal patterns. In the present study, we examined whether similar underestimation would take place with visual temporal patterns. It turned out that underestimation of the same kind takes place also in the visual modality. However, a considerable difference between the auditory and the visual modalities appeared. In the auditory modality, it had been shown that the amount of underestimation decreased for preceding time intervals longer than 200 ms. In the present study, the underestimation increased when the preceding time interval varied from 160 to 400 ms. Furthermore, the differences between the two neighbouring intervals which could cause this underestimation had always been in a fixed range in the auditory modality. In the visual modality, the range was broader when the intervals were longer. These results were interpreted in terms of an assimilation process in light of the processing-time hypothesis proposed by Nakajima (1987 Perception 16 485-520) in order to explain an aspect of empty-duration perception.  相似文献   

5.
INTRODUCTION: Temporal processing has received scant attention in the literature pertaining to cognitive deficits in patients with schizophrenia. Previous research suggests that patients with schizophrenia exhibit temporal perception deficits on both auditory and visual stimuli. The current study investigated the effects of interval manipulation to (1) replicate the original findings with a larger sample and an increased number of trials (2) assess the degree to which both patients and controls can differentiate temporal changes in a range of experimental interstimulus intervals, and (3) explore whether different interstimulus interval durations pose different levels of difficulty for the patients with schizophrenia. METHODS: Participants were asked to decide whether temporal intervals were shorter or longer than standard intervals on a computer-based auditory temporal perception task. The standard interval remained the same duration throughout the various tasks. The interstimulus interval separating the standard and experimental intervals varied in the range of 500, 1000, or 3000 ms. Data are presented for a sample of 16 patients with schizophrenia and 15 controls. RESULTS: Data suggest that patients with schizophrenia exhibit deficits in differentiating interval durations across all paradigms compared to their control-group peers on a range of auditory tasks (p<.001). CONCLUSIONS: These results are consistent with a general temporal deficit in schizophrenia. However, the roles of medication and localization are also addressed.  相似文献   

6.
Adults and children (5- and 8-year-olds) performed a temporal bisection task with either auditory or visual signals and either a short (0.5-1.0s) or long (4.0-8.0s) duration range. Their working memory and attentional capacities were assessed by a series of neuropsychological tests administered in both the auditory and visual modalities. Results showed an age-related improvement in the ability to discriminate time regardless of the sensory modality and duration. However, this improvement was seen to occur more quickly for auditory signals than for visual signals and for short durations rather than for long durations. The younger children exhibited the poorest ability to discriminate time for long durations presented in the visual modality. Statistical analyses of the neuropsychological scores revealed that an increase in working memory and attentional capacities in the visuospatial modality was the best predictor of age-related changes in temporal bisection performance for both visual and auditory stimuli. In addition, the poorer time sensitivity for visual stimuli than for auditory stimuli, especially in the younger children, was explained by the fact that the temporal processing of visual stimuli requires more executive attention than that of auditory stimuli.  相似文献   

7.
This article reports a detailed examination of timing in the vibrotactile modality and comparison with that of visual and auditory modalities. Three experiments investigated human timing in the vibrotactile modality. In Experiment 1, a staircase threshold procedure with a standard duration of 1,000 ms revealed a difference threshold of 160.35 ms for vibrotactile stimuli, which was significantly higher than that for auditory stimuli (103.25 ms) but not significantly lower than that obtained for visual stimuli (196.76 ms). In Experiment 2, verbal estimation revealed a significant slope difference between vibrotactile and auditory timing, but not between vibrotactile and visual timing. That is, both vibrations and lights were judged as shorter than sounds, and this comparative difference was greater at longer durations than at shorter ones. In Experiment 3, performance on a temporal generalization task showed characteristics consistent with the predications of scalar expectancy theory (SET: Gibbon, 1977) with both mean accuracy and scalar variance exhibited. The results were modelled using the modified Church and Gibbon model (MCG; derived by Wearden, 1992, from Church & Gibbon 1982). The model was found to give an excellent fit to the data, and the parameter values obtained were compared with those for visual and auditory temporal generalization. The pattern of results suggest that timing in the vibrotactile modality conforms to SET and that the internal clock speed for vibrotactile stimuli is significantly slower than that for auditory stimuli, which is logically consistent with the significant differences in difference threshold that were obtained.  相似文献   

8.
This experiment investigated the effect of modality on temporal discrimination in children aged 5 and 8 years and adults using a bisection task with visual and auditory stimuli ranging from 200 to 800 ms. In the first session, participants were required to compare stimulus durations with standard durations presented in the same modality (within-modality session), and in the second session in different modalities (cross-modal session). Psychophysical functions were orderly in all age groups, with the proportion of long responses (judgement that a duration was more similar to the long than to the short standard) increasing with the stimulus duration, although functions were flatter in the 5-year-olds than in the 8-year-olds and adults. Auditory stimuli were judged to be longer than visual stimuli in all age groups. The statistical results and a theoretical model suggested that this modality effect was due to differences in the pacemaker speed of the internal clock. The 5-year-olds also judged visual stimuli as more variable than auditory ones, indicating that their temporal sensitivity was lower in the visual than in the auditory modality.  相似文献   

9.
Patients with unilateral (left or right) medial temporal lobe lesions and normal control (NC) volunteers participated in two experiments, both using a duration bisection procedure. Experiment 1 assessed discrimination of auditory and visual signal durations ranging from 2 to 8 s, in the same test session. Patients and NC participants judged auditory signals as longer than equivalent duration visual signals. The difference between auditory and visual time discrimination was equivalent for the three groups, suggesting that a unilateral temporal lobe resection does not modulate the modality effect. To document interval-timing abilities after temporal lobe resection for different duration ranges, Experiment 2 investigated the discrimination of brief, 50-200 ms, auditory durations in the same patients. Overall, patients with right temporal lobe resection were found to have more variable duration judgments across both signal modality and duration range. These findings suggest the involvement of the right temporal lobe at the level of the decision process in temporal discriminations.  相似文献   

10.
Even though phenomenological observations and anecdotal reports suggest atypical time processing in individuals with an autism spectrum disorder (ASD), very few psychophysical studies have investigated interval timing, and the obtained results are contradictory. The present study aimed to clarify which timing processes function atypically in ASD and whether they are related to the ASD diagnostic profile. Visual, auditory, and cross-modal interval timing was assessed in 18 individuals with ASD using a repeated standards version of the temporal generalization task. The use of two different standard durations (600 and 1,000 ms) allowed for an assessment of the scalar property of interval timing in ASD, a fundamental characteristic of interval timing. The ASD group showed clearer adherence to the scalar property of interval timing than the control group. In addition, both groups showed the normal effect that auditory stimuli had longer subjective durations than visual ones. Yet, signal detection analysis showed that the sensitivity of temporal discrimination was reduced in the ASD group across modalities, in particular for auditory standards. Moreover, response criteria in the ASD group were related to symptom strength in the communication domain. The findings suggest that temporal intervals are fundamentally processed in the same way in ASD and TD, but with reduced sensitivity for temporal interval differences in ASD. Individuals with ASD may show a more conservative response strategy due to generally decreased sensitivity for the perception of time intervals.  相似文献   

11.
Whereas the visual modality tends to dominate over the auditory modality in bimodal spatial perception, the auditory modality tends to dominate over the visual modality in bimodal temporal perception. Recent results suggest that the visual modality dominates bimodal spatial perception because spatial discriminability is typically greater for the visual than for the auditory modality; accordingly, visual dominance is eliminated or reversed when visual-spatial discriminability is reduced by degrading visual stimuli to be equivalent or inferior to auditory spatial discriminability. Thus, for spatial perception, the modality that provides greater discriminability dominates. Here, we ask whether auditory dominance in duration perception is similarly explained by factors that influence the relative quality of auditory and visual signals. In contrast to the spatial results, the auditory modality dominated over the visual modality in bimodal duration perception even when the auditory signal was clearly weaker, when the auditory signal was ignored (i.e., the visual signal was selectively attended), and when the temporal discriminability was equivalent for the auditory and visual signals. Thus, unlike spatial perception, where the modality carrying more discriminable signals dominates, duration perception seems to be mandatorily linked to auditory processing under most circumstances.  相似文献   

12.
Previous research has found that repeated exposure to briefly presented visual stimuli can increase the positive affect for the stimuli without enhancing their recognition. Subjects could discriminate target and distractor shapes by affective preference in the absence of recognition memory. This study examined this phenomenon as a function of stimulus exposure duration. Over exposure durations of 0, 2, 8, 12, 24, and 48 ms, the functions for affect and recognition judgments exhibited different temporal dynamics. Target selection by affect was possible at very brief exposures and was influenced little by increasing durations; target selection by recognition required longer stimulus exposures and improved with increasing durations. Affective discrimination of stimuli that are not recognized is a reliable phenomenon, but it occurs only within a narrow band of time. This parametric study has specified the relationship between exposure duration and affect and recognition judgments and has located that temporal window.  相似文献   

13.
Here, we investigate how audiovisual context affects perceived event duration with experiments in which observers reported which of two stimuli they perceived as longer. Target events were visual and/or auditory and could be accompanied by nontargets in the other modality. Our results demonstrate that the temporal information conveyed by irrelevant sounds is automatically used when the brain estimates visual durations but that irrelevant visual information does not affect perceived auditory duration (Experiment 1). We further show that auditory influences on subjective visual durations occur only when the temporal characteristics of the stimuli promote perceptual grouping (Experiments 1 and 2). Placed in the context of scalar expectancy theory of time perception, our third and fourth experiments have the implication that audiovisual context can lead both to changes in the rate of an internal clock and to temporal ventriloquism-like effects on perceived on- and offsets. Finally, intramodal grouping of auditory stimuli diminished any crossmodal effects, suggesting a strong preference for intramodal over crossmodal perceptual grouping (Experiment 5).  相似文献   

14.
Temporal judgements are often accounted for by a single-clock hypothesis. The output of such a clock is reported to depend on the allocation of attention. In the present series of experiments, the influence of attention on temporal information processing is investigated by systematic variations of the period preceding brief empty intervals to be judged. Two indicators of timing performance, temporal sensitivity, reflecting discrimination performance, and perceived duration served as dependent variables. Foreperiods ranged from 0.3 to 0.6 s in Experiments 1 to 4. When the foreperiod varied randomly from trial to trial, perceived duration was longer with increasing length of foreperiod (Experiments 1 and 3 with brief auditory markers and Experiment 4 with brief visual markers), an effect that disappeared with no trial-to-trial variations (Experiment 2). Longer foreperiods also enhanced performance on temporal discrimination of auditory empty intervals with a base duration of 100 ms (Experiments 1 and 5), whereas discrimination performance was unaffected for auditory intervals with a base duration of 500 ms (Experiment 3). The variable-foreperiod effect on perceived duration also held when foreperiods ranged from 0.6 to 1.5 s (Experiments 5-7). Findings suggest that foreperiods appear to effectively modulate attention mechanisms necessary for temporal information processing. However, alternative explanations such as assimilation or compatibility effects cannot be totally discarded.  相似文献   

15.
Four experiments examined judgements of the duration of auditory and visual stimuli. Two used a bisection method, and two used verbal estimation. Auditory/visual differences were found when durations of auditory and visual stimuli were explicitly compared and when durations from both modalities were mixed in partition bisection. Differences in verbal estimation were also found both when people received a single modality and when they received both. In all cases, the auditory stimuli appeared longer than the visual stimuli, and the effect was greater at longer stimulus durations, consistent with a “pacemaker speed” interpretation of the effect. Results suggested that Penney, Gibbon, and Meck's (2000) “memory mixing” account of auditory/visual differences in duration judgements, while correct in some circumstances, was incomplete, and that in some cases people were basing their judgements on some preexisting temporal standard.  相似文献   

16.
Strybel TZ  Vatakis A 《Perception》2004,33(9):1033-1048
Unimodal auditory and visual apparent motion (AM) and bimodal audiovisual AM were investigated to determine the effects of crossmodal integration on motion perception and direction-of-motion discrimination in each modality. To determine the optimal stimulus onset asynchrony (SOA) ranges for motion perception and direction discrimination, we initially measured unimodal visual and auditory AMs using one of four durations (50, 100, 200, or 400 ms) and ten SOAs (40-450 ms). In the bimodal conditions, auditory and visual AM were measured in the presence of temporally synchronous, spatially displaced distractors that were either congruent (moving in the same direction) or conflicting (moving in the opposite direction) with respect to target motion. Participants reported whether continuous motion was perceived and its direction. With unimodal auditory and visual AM, motion perception was affected differently by stimulus duration and SOA in the two modalities, while the opposite was observed for direction of motion. In the bimodal audiovisual AM condition, discriminating the direction of motion was affected only in the case of an auditory target. The perceived direction of auditory but not visual AM was reduced to chance levels when the crossmodal distractor direction was conflicting. Conversely, motion perception was unaffected by the distractor direction and, in some cases, the mere presence of a distractor facilitated movement perception.  相似文献   

17.
Schutz M  Lipscomb S 《Perception》2007,36(6):888-897
Percussionists inadvertently use visual information to strategically manipulate audience perception of note duration. Videos of long (L) and short (S) notes performed by a world-renowned percussionist were separated into visual (Lv, Sv) and auditory (La, Sa) components. Visual components contained only the gesture used to perform the note, auditory components the acoustic note itself. Audio and visual components were then crossed to create realistic musical stimuli. Participants were informed of the mismatch, and asked to rate note duration of these audio-visual pairs based on sound alone. Ratings varied based on visual (Lv versus Sv), but not auditory (La versus Sa) components. Therefore while longer gestures do not make longer notes, longer gestures make longer sounding notes through the integration of sensory information. This finding contradicts previous research showing that audition dominates temporal tasks such as duration judgment.  相似文献   

18.
毕翠华  黄希庭 《心理科学》2016,39(4):801-806
本研究操作记忆信息与计时开始之间的时间间隔(ISI)和目标时距,探讨工作记忆影响时间判断的灵活性。被试首先记忆一个客体,然后在每个trial的最后判断测试刺激是否与记忆项相同;在延迟阶段,被试完成时间判断任务,即判断相继出现的两个刺激的时距哪个更长(或更短)。时间任务中的一个刺激与记忆内容完全相同,相应的另一个刺激与记忆内容在形状和颜色上都不同。重复条件下,被试忽略第一个刺激,仅完成时间判断任务。结果发现,时间间隔(ISI)短时,记忆匹配条件下的准确率更高,匹配刺激延长了知觉的时间;但随着时间间隔的增加,工作记忆匹配对时间判断的影响降低甚至消失。并且,长或短ISI,记忆任务或重复条件下,目标时距长时,记忆匹配反而缩短了知觉的时间。研究说明工作记忆对时间判断的影响是灵活的,受到注意或工作记忆等高级认知系统的调控。  相似文献   

19.
Four experiments examined judgements of the duration of auditory and visual stimuli. Two used a bisection method, and two used verbal estimation. Auditory/visual differences were found when durations of auditory and visual stimuli were explicitly compared and when durations from both modalities were mixed in partition bisection. Differences in verbal estimation were also found both when people received a single modality and when they received both. In all cases, the auditory stimuli appeared longer than the visual stimuli, and the effect was greater at longer stimulus durations, consistent with a “pacemaker speed” interpretation of the effect. Results suggested that Penney, Gibbon, and Meck's (2000) “memory mixing” account of auditory/visual differences in duration judgements, while correct in some circumstances, was incomplete, and that in some cases people were basing their judgements on some preexisting temporal standard.  相似文献   

20.
The aim of this study was to compare the effect of different emotional stimuli (neutral, positive, and negative) on time perception in children with attention‐deficit/hyperactivity disorder (ADHD) and normal children in dual‐task form. Five hundred and ninety‐nine students from primary schools were randomly selected. The Conner's Teacher Rating Scale (CTRS) questionnaire was completed by teachers. A total of 100 children with a score above the cut‐off point for the CTRS were further assessed using the Child Symptom Inventory‐4 (CSI‐4). A total of 34 children with ADHD and 31 controls completed an emotional time discrimination task in two blocks of 1000 and 2000 ms duration. Children were asked to compare three image groups: neutral with neutral, neutral with positive, and neutral with negative images. Children with ADHD had significantly better performance in the emotional time discrimination task across all conditions when compared with controls: On average, discrimination thresholds were approximately 35 ms shorter for the children with ADHD. Our results indicate that children with ADHD have higher sensitivity to time relative to controls in a situation in which they must distribute resources between temporal and emotional processing. On the basis of the interference effect and the working memory capacity hypothesis, this dividing of attention causes a decrease of time accuracy in normal children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号