首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary S-R compatibility and Simon effects were studied for real visual motion. In Experiment 1, two small stimulus lights were constantly visible, 5° to the left and right of fixation; after a random delay, one began to move at 2°/s. In Experiment 2, a single stimulus light moving at 2°/s suddenly appeared 5° to the left or right of fixation, i. e., motion onset and stimulus onset coincided. In both experiments, subjects responded by a key press with their left or right index finger as soon as they detected motion. In Condition A responses were made to the position (left or right) from which the motion started, irrespective of its direction (position compatibility); in Condition B responses were made to the direction of motion (leftward or rightward) irrespective of whether motion started to the left or to the right of fixation (direction compatibility). The results show strong compatibility effects for both position and direction of motion in both experiments. A Simon effect, however, occurred only when position was task irrelevant in Experiment 1; no Simon effect was found in Experiment 2. The data only partly confirm previous results obtained with apparent motion. The selective lack of a Simon effect supports the integrated model of Umiltá and Nicoletti (1992), which requires orienting of attention for the Simon effect to occur. It is specifically assumed that this attention-orienting is triggered only by the saccade program and does not extend to the pursuit program that is initiated by smooth stimulus motion.  相似文献   

3.
Many Early Intensive Behavioral Intervention (EIBI) curricula recommend teaching receptive responding before targeting expressive responding (Leaf & McEachin, 1999; Lovaas, 2003). However, a small literature base suggests that teaching expressive responses first may be more efficient when teaching children with ASD and other developmental disabilities (Petursdottir & Carr, 2011). The present study employed an alternating treatments design to compare the effects of three instructional sequences to teach feature, function, and class to three children diagnosed with ASD: (a) receptive–expressive, (b) expressive–receptive, and (c) mixed. The results suggested that expressive–receptive was the most efficient training sequence for all three participants. Additionally, greater emergent responding was observed with the expressive–receptive training sequence.  相似文献   

4.
The effect of brief auditory stimuli on visual apparent motion   总被引:1,自引:0,他引:1  
Getzmann S 《Perception》2007,36(7):1089-1103
When two discrete stimuli are presented in rapid succession, observers typically report a movement of the lead stimulus toward the lag stimulus. The object of this study was to investigate crossmodal effects of irrelevant sounds on this illusion of visual apparent motion. Observers were presented with two visual stimuli that were temporally separated by interstimulus onset intervals from 0 to 350 ms. After each trial, observers classified their impression of the stimuli using a categorisation system. The presentation of short sounds intervening between the visual stimuli facilitated the impression of apparent motion relative to baseline (visual stimuli without sounds), whereas sounds presented before the first and after the second visual stimulus as well as simultaneously presented sounds reduced the motion impression. The results demonstrate an effect of the temporal structure of irrelevant sounds on visual apparent motion that is discussed in light of a related multisensory phenomenon, 'temporal ventriloquism', on the assumption that sounds can attract lights in the temporal dimension.  相似文献   

5.
Four experiments were conducted, three with tactile stimuli and one with visual stimuli, in which subjects made temporal order judgments (TOJs). The tactile stimuli were patterns that moved laterally across the fingerpads. The subject's task was to judge which finger received the pattern first. Even though the movement was irrelevant to the task, the subjects' TOJs were greatly affected by the direction of movement of the patterns. Accuracy in judging temporal order was enhanced when the patterns moved in a direction that was consistent with the temporal order of presentation--for example, when the movement on each fingerpad was from right to left and the temporally leading site of stimulation was to the right of the temporally trailing site of stimulation. When movement was inconsistent with the temporal order of presentation, accuracy was considerably reduced, often well below chance.The bias in TOJs was unaffected by training or by presenting the stimuli to fingers on opposite hands. In a fourth experiment, subjects judged the temporal order of visual stimuli that, like the tactile stimuli, moved in a direction that was either consistent or inconsistent with the TOJ. The results were similar to those obtained with tactile stimuli. It is suggested that the bias may be affected by attentional mechanisms and by apparent motion generated between the two sites on the skin.  相似文献   

6.
In the primate visual system, there is a significant delay in the arrival of photoreceptor signals in visual cortical areas. Since Helmholtz, scientists have pondered over the implications of these delays for human perception. Do visual delays cause the ' position of a moving object to lag its 'real' position? This question has recently been re-evaluated in the context of the flash-lag phenomenon, in which a flashed object appears to lag behind a moving object, when physically the two objects are co-localized at the instant of the flash. This article critically examines recent accounts of this phenomenon, assesses its biological significance, and offers new hypotheses.  相似文献   

7.
Summary In visual perception complex movements are usually split up into components — e.g., in such a way that a moving reference system is applied, to which partial movements can be related. In the following experiment a perceptual vector analysis of this kind was investigated. It was shown that 1) a radial translatory movement (relative component) can be isolated perceptually from a rotatory movement (global component) and that 2) the precision of this decomposition of the complex movement is dependent on the strength at which the rotating reference system is anchored perceptually.The authors wish to thank M. Rauterberg for collecting the experimental data  相似文献   

8.
The present studies provided separate tests of the varied context and varied encoding hypotheses of the MP-DP effect. The investigation of varied encoding used an incidental learning procedure in which the nature of the orienting task was manipulated such that the subject attended to different attributes of words (varied encoding) or only one attribute (same encoding). While the prediction that the recall of MP-DP items should be comparable under comparable levels of encoding was not supported, differences were obtained in recall of items under same and variable orienting task conditions. An MP-DP effect was obtained under the incidental learning procedure. Tests of varied context involved the presentation of target items in list contexts which were the same or different from list contexts on previous occurrences of the item. The prediction that recall of items surrounded by different context should exceed that of items surrounded by the same context was not supported.  相似文献   

9.
The effect of full-field sinusoidal visual roll motion stimuli of various frequencies and peak velocities upon the orientation of subjective visual vertical (SV) was studied. The angle of the optokinetically induced displacement of SV was found to be a linear function of the logarithm of the stimulus oscillation angle. Interindividual slopes of this function varied between 2 and 9. The logarithmic function is independent of stimulus frequency within the range of .02 Hz to .5 Hz and of peak stimulus velocity from 7.5°/sec to 170°/sec. It holds for oscillation angles up to 100°–140°. With larger rotational angles, saturation is reached. With small stimulus angles, a surprisingly high threshold (5°-8°) was observed in our experiments. This may reflect the unphysiological combination of visual roll stimuli without corroborating vestibular and proprioceptive inputs normally present when body sway produces visual stimulation. Under natural conditions, the visual feedback about spontaneous sway stabilizes body posture by integrating rotational velocity over stimulus duration which is equal to rotational angle.  相似文献   

10.
The ability of the visual system to localize objects is one of its most important functions and yet remains one of the least understood, especially when either the object or the surrounding scene is in motion. The specific process that assigns positions under these circumstances is unknown, but two major classes of mechanism have emerged: spatial mechanisms that directly influence the coded locations of objects, and temporal mechanisms that influence the speed of perception. Disentangling these mechanisms is one of the first steps towards understanding how the visual system assigns locations to objects when there are motion signals present in the scene.  相似文献   

11.
12.
13.
Mental imagery is thought to share properties with perception. To what extent does the process of imagining a scene share neural circuits and computational mechanisms with actually perceiving the same scene? Here, we investigated whether mental imagery of motion in a particular direction recruits neural circuits tuned to the same direction of perceptual motion. To address this question we made use of a visual illusion, the motion aftereffect. We found that following prolonged imagery of motion in one direction, people are more likely to perceive real motion test probes as moving in the direction opposite to the direction of motion imagery. The transfer of adaptation from imagined to perceived motion provides evidence that motion imagery and motion perception recruit shared direction-selective neural circuitry. Even in the absence of any visual stimuli, people can selectively recruit specific low-level sensory neurons through mental imagery.  相似文献   

14.
Mirenzi A  Hiris E 《Perception》2011,40(10):1257-1260
We demonstrate the Thatcher effect in biological-motion displays and show that it is primarily a result of the moving, and not static, cues in the display.  相似文献   

15.
Three studies relating perception of motion to stimulus uncertainty are reported. Generally, detectability declines when the observer is uncertain about the direction in which a target will move, but the visibility loss associated with direction uncertainty can be attenuated if the observer has adequate practice. This attenuation seems to depend upon the observer's ability to switch among directionally selective visual mechanisms in an adaptive fashion. The implications of these findings for models of motion detection are discussed.  相似文献   

16.
Observers viewed monocular animations of rotating dihedral angles and were required to indicate their perceived structures by adjusting the magnitude and orientation of a stereoscopic dihedral angle. The motion displays were created by directly manipulating various aspects of the image velocity field, including the mean translation, the horizontal and vertical velocity gradients, and the manner in which these gradients changed over time. The adjusted orientation of each planar facet was decomposed into components of slant and tilt. Although the tilt component was estimated with a high degree of accuracy, the judgments of slant exhibited large systematic errors. The magnitude of perceived slant was determined primarily by the magnitude of the velocity gradient scaled by its direction. The results also indicate that higher order temporal derivatives of the moving elements had little effect on observers' judgments.  相似文献   

17.
18.
To examine the effects of early visual experience on preference for biological motion (BM), newly hatched chicks were exposed to a point-light animation (a visual stimulus composed of identical light points) depicting the following features of a hen: a walking hen (a BM stimulus), a rotating hen (a non-BM stimulus), a pendulum stimulus, a random motion stimulus and a stationary pattern. Chicks were then tested in a binary choice task, choosing between walking-hen and rotating-hen stimuli. Males exhibited a preference for BM if they had been trained with any animation except the stationary pattern stimulus, suggesting that the BM preference was not learned, but induced by motion stimuli. We found a significant positive correlation between the number of approaches in training and the preference in the test, but locomotion alone did not cause preference for BM. In contrast, females exhibited a particularly strong preference for walking-hen stimuli, but only when they had been trained with it. Furthermore, females (but not males) trained with random motion showed a preference for walking hen over walking cat (a biological motion animation depicting a cat), possibly suggesting that females are choosier than males. Chicks trained with a stationary pattern and untrained controls did not show a significant preference. The induction of BM preference is discussed in terms of possible ecological background of the sex differences.  相似文献   

19.
20.
Would a motion-picture film of a rotating spiral induce a spiral aftereffect? This question was studied in two experiments in which Ss viewed an animated film of circles collapsing to a point. The rate of apparent motion of the collapsing circles and the discontinuity of motion—the length of jump between successively projected circles—were varied independently. A visual aftereffect like the spiral aftereffect was created. The aftereffect increased in strength and duration with the rate of motion, but at all rates of motion it declined as discontinuity of motion increased. The results are taken as evidence that motion aftereffects are caused by selective fatigue of small, directionally sensitive motion-receptive fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号