首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The same isochronous tone sequence was presented simultaneously to two mutually isolated subjects. In half the trials, accentuation in this sequence was accomplished by doubling the duration of the first and then of every fourth tone; in the other half, by doubling the frequency of those tones. The subjects’ task was to follow the rhythm of the resulting four-tone patterns by finger tapping to tone onsets. There were four auditory feedback (FB) conditions: (1) no FB; (2) FB from the subject’s own motor responses; (3) “alien” FB from the motor responses of the other pair member who, in turn, was listening to FB from his/her own tapping; (4) mutually “crossed” FB, where each pair member listened to FB from the tapping of the other. Tap onsets regularly preceded stimulus onsets. The observed order of the amount of this anticipation (from least to greatest) was: (1) own FB, (2) no FB, (3) alien FB, and (4) crossed FB. No mutual dynamic influence between simultaneously performing subjects was-detected. Anticipation was more pronounced for sequences that were accentuated by frequency rather than by duration changes. The type of accent also influenced timing of intertap intervals in the rhythmic patterns. For the frequency accent, regular timing was produced, whereas for the durational accent, shortening of the second and lengthening of the fourth (the last) intertap interval were observed. The presence and source of feedback as well as the character of accentuation are therefore relevant factors in the timing of auditorally controlled rhythmic motor behavior.  相似文献   

2.
In Experiment 1, masking-level differences (MLDs) for a 500-Hz tone at five masker levels were obtained from younger and older adults. For both age groups, there were no reliable increases in MLD once the spectrum level of the masker exceeded 27 dB SPL. MLDs were larger for younger than for older adults over the range of masker levels tested. In Experiment 2, the levels of both the signal and the masker in one ear were attenuated by either 15 or 30 dB relative to their level in the other ear, which was fixed at a spectrum level of 47 dB SPL. MLDs for both age groups declined with increasing IAA and age-related differences were observed in all conditions. The findings of these experiments indicate that (1) age-related differences in MLDs exist even when the level of the masker is sufficiently high that older adults achieve their plateau performance, and (2) older listeners are not disadvantaged more than younger listeners by interaural differences in the level of the input.  相似文献   

3.
The startle threshold of the albino Sprague-Dawley rat runs parallel to the curve of the hearing threshold. The difference between the startle and hearing threshold is 87 dB (SPL) at a background noise level of 75 dB (SPL). At 110 dB (SPL), the threshold has a range from 2 kHz to 50 kHz with a minimum at 10 kHz and a second minimum at 40 kHz. Amplitude and latency of the startle response are not only dependent on the sensation level of the acoustic stimulus but also on the frequency. At threshold, only the head movement component of the startle response is elicited.  相似文献   

4.
Experiment 1 elicited the P1, N1, P2, and N2 components of the long latency auditory evoked potential (AEP) using a 1000 Hz tone presented at 30, 50, or 70 dB SPL and 1-, 3-, or 5- second inter-stimulus intervals to assess the relative effects of the combination of these variables on component amplitude and latency. Four blocks of 16 tone presentations each were recorded from each subject to determine if changes in the AEP would occur because of short-term habituation. Both stimulus factors interacted significantly in a systematic fashion for the amplitude measures, with increases in latency also associated with increases in intensity and inter-stimulus interval. Only minor changes across the four trial blocks for either the amplitude or latency measures were observed over the various stimulus presentation conditions. Experiment 2 employed the same tone stimulus presented at 50 dB SPL and a 3-second inter-stimulus interval. Eight blocks of 64 trials were recorded from each subject on each day for four days to investigate long-term habituation effects. No substantial changes in any of the component amplitudes or latencies were obtained across the 32 trial blocks. It was concluded that intensity and inter-stimulus interval interact to determine AEP amplitude as well as latency values and that the constituent components do not change appreciably with repeated stimulus presentations, even after several days.  相似文献   

5.
Trained listeners had to discriminate, in a four-level 2AFC paradigm, the duration of a time interval bounded by pairs of brief tone bursts. The time intervals ranged from 10 to 100 msec. When the tone-burst markers were similar in their intensity (86 dB SPL) and frequency (1 kHz), the just noticeable time difference was found to be monotonically related to the base interval. On the other hand, when the intensity of the first marker was severely attenuated (by 50 dB) or when a large (2-octave) difference was introduced between the frequencies of the two markers, the time discrimination functions became nonmonotonic. A similar, albeit slight, departure from monotonicity was also achieved by making the second marker much longer than the first (300 msec vs. 10 msec). The nonmonotonicity of these time discrimination functions is compared to the well-documented nonmonotonicity that may be observed for voice onset time (VOT) discrimination functions.  相似文献   

6.
Previous work has demonstrated that infants' thresholds for a pure tone are elevated by a masker more than would be predicted from their critical bandwidths. The present studies explored the nature of this additional masking. In Experiment 1, detection thresholds of 6-month-old infants and of adults for a 1-kHz tone were estimated under three conditions: in quiet, in the presence of a 4- to 10-kHz bandpass noise at 40 dB SPL, and in the presence of the same noise at 50 dB SPL. The noise was gated on at the beginning of each trial. Adult thresholds were the same in all three conditions, indicating that little or no sensory masking took place in the presence of the noise. Infant thresholds were about 10 dB higher in the presence of the noise. We term this effect distraction masking. In Experiment 2, the effect of gating the noise on at trial onset was examined. Thresholds for the same tone were estimated in quiet and in the presence of the band-pass noise at 40 dB SPL, but the noise was presented continuously during the session. Under these conditions, distraction masking was still observed for infants. These findings suggest that a masker can have nonsensory effects on infants' performance in a psychoacoustic task.  相似文献   

7.
Previous work has demonstrated that infants’ thresholds for a pure tone are elevated by a masker more than would be predicted from their critical bandwidths. The present studies explored the nature of this additional masking. In Experiment 1, detection thresholds of 6-month-old infants and of adults for a 1-kHz tone were estimated under three conditions: in quiet, in the presence of a 4- to 10-kHz bandpa] noise at 40 dB SPL, and in the presence of the same noise at 50 dB SPL. The noise was gated on at the beginning of each trial. Adult thresholds were the same in all three conditions, indicating that little or no sensory masking took place in the presence of the noise. Infant thresholds were about 10 dB higher in the presence of the noise. We term this effectdistraction masking. In Experiment 2, the effect of gating the noise on at trial onset was examined. Thresholds for the same tone were estimated in quiet and in the presence of the bandpass noise at 40 dB SPL, but the noise was presented continuously during the session. Under these conditions, distraction masking was still observed for infants. These findings suggest that a masker can have nonsensory effects on infants’ performance in a psychoacoustic task.  相似文献   

8.
In two experiments the effect of loud noise on a simple vibrotactile learning task was studied. After learning the task to criterion, 10 male and 10 female Ss received two pairs of test trials, one without noise, and one in continuous noise (a 1,000 cps pure tone at 90 dB SPL). An additional 10 male and 10 female Ss learned the same task and also received the same two pairs of test trials, but instead of receiving continuous noise for the second condition, they received an intermittent noise (random numbers presented at 2 sec intervals at 95 dB SPL). In the first experiment noise had a significant effect on the performance of the 20-subject group and also on the females in the group. Noise did not significantly affect the performance of males. In the second experiment noise had no significant effect on either males or females.  相似文献   

9.
An experiment was conducted to determine if duty cycle and off time of tone pulses presented to the comparison ear influence adaptation measured at the opposite (test) ear. Eight subjects were adapted for 5 min to a 1-kHz pure tone at 60 dB SPL. Using a tracking procedure, adaptation was measured under five comparison-signal conditions, each comprised of 1-kHz pulse trains having different on/off times. The on/off times (in milliseconds) were: 200/800 (20% duty cycle); 500/500, 200/200, and 800/800 (50% duty cycle); and 800/200 (80% duty cycle). Adaptation was found to increase as the duty cycle of the comparison tones increased from 20% to 80%. This was evident even when attempts were made to account for the extent to which pulse trains are perceived as softer than continuous signals at the same level (the so-called LOT effect). For the 50%-duty-cycle conditions, similar amounts of adaptation were measured whether the on/off times of the signals were 200, 500, or 800 msec.  相似文献   

10.
The effects of psychological set on perception of first and second pain were determined for 20 subjects. Percutaneous electrical shock intensities (6–8 mA, 3 msec) sufficient to evoke double pain responses were used in all subjects. Psychological sets included PAST (“Place yourself in a previous experience that was free of any significant emotional tone”), PRESENT (“Feel your foot that will be shocked”), and FUTURE (“Think to yourself that you are about to be shocked”). Perception of second pain was never perceived in PAST and FUTURE sets but was always perceived in the PRESENT set. Furthermore, at minimal rates of stimulation ( > 1/3 sec), summation of second pain occurred in the PRESENT set but not in the FUTURE set. All subjects startled in the FUTURE set and did not startle in PAST or PRESENT sets. Each subject reported that the aversiveness of the shock related to painful sensations in PAST and PRESENT sets and to ones own body responses in the FUTURE set.  相似文献   

11.
When subjects gave magnitude estimates of 500- and 2500-Hz tones at various SPLs, they judged a 500-Hz tone of 60 dB to be as loud as a 2500-Hz tone of 57 dB in one context (low SPLs at 500 Hz, high SPLs at 2500 Hz), but as loud as a 2500-Hz tone at 40 dB in another context (high SPLs at 500 Hz, low at 2500 Hz) (Marks, 1988). Such shifts in matches derived from judgments of multi-dimensionally varying stimuli are termedslippery context effects. The present set of seven experiments showed that slippery effects were absent from judgments of pitch of tones at different loudnesses, duration of tones at different pitches, and length of lines at different colors, though a small effect emerged in judgments of duration of tones and lights. Slippery context effects were substantial when subjects gave magnitude estimates of loudness of 500- and 2500-Hz tones under conditions in which the pitch at each trial either was cued visually beforehand or could be known through the regular stimulus sequence, and with instructions to make absolute magnitude estimates. The results are consistent with the view that slippery context effects occur automatically and “preattentively.”  相似文献   

12.
A visually reinforced operant paradigm was employed to examine the relationship between the difference limen (DL) for intensity and level of the standard during infancy. In Experiment 1,7-month-old infants and adults detected increments in continuous noise presented via headphones at each of four levels ranging from 28 to 58 dB SPL. Noise stimuli were 2-octave bands centered at either 400 or 4000 Hz, and increments were 10 and 100 msec in duration. Infants’ DLs were significantly larger than those of adult subjects and significantly larger for low- than for high-frequency stimuli. For the high-frequency noise band, infants’ DLs were generally consistent with Weber’s law,remaining essentially constant for standards higher than 28 dB SPL (3 dB SL) for 100-msec increments and 38 dB SPL (13 dB SL) for 10-msec increments. For low-frequency noise, infants’ absolute thresholds were exceptionally high, and sensation levels of the standards were too low to adequately describe the relationship. In Ex-periment 2, 7-month-old infants detected 10- and 100-msec increments in 400-Hz noise stimuli presented in sound field. Infants’ low-frequency DLs were large at low intensities and decreased with increases in level of the standard up to at least 30 dB SL. For both low- and high-frequency noise, the difference between DLs for 10- and 100-msec increments tended to be large at low levels of the standard and to decrease at higher levels. These results suggest that the relationship between the DL and level of the standard varies with both stimulus frequency and duration during infancy. However, stimulus-dependent immaturities in increment detection may be most evident at levels within approximately 30 dB of absolute threshold.  相似文献   

13.
The gap transfer illusion is an auditory illusion where a temporal gap inserted in a longer glide tone is perceived as if it were in a crossing shorter glide tone. Psychophysical and phenomenological experiments were conducted to examine the effects of sound-pressure-level (SPL) differences between crossing glides on the occurrence of the gap transfer illusion. We found that the subjective continuity-discontinuity of the crossing glides changed as a function of the relative level of the shorter glide to the level of the longer glide. When the relative level was approximately between -9 and +2 dB, listeners perceived the longer glide as continuous and the shorter glide as discontinuous, that is, the gap transfer illusion took place. The glides were perceived veridically below this range, that is, gap transfer did not take place, whereas above this range the longer glide and the shorter glide were both perceived as continuous. The fact that the longer glide could be perceived as continuous even when the crossing shorter glide was 9 dB weaker indicates that the longer glide's subjective continuity cannot be explained within the conventional framework of auditory organization, which assumes reallocation of sound energy from the shorter to the longer glide. The implicated mechanisms are discussed in terms of the temporal configuration of onsets and terminations and the time-frequency distribution of sound energy. (PsycINFO Database Record (c) 2012 APA, all rights reserved).  相似文献   

14.
To evaluate a model of top-down gain control in the auditory system, 6 participants were asked to identify 1-kHz pure tones differing only in intensity. There were three 20-session conditions: (1) four soft tones (25, 30, 35, and 40 dB SPL) in the set; (2) those four soft tones plus a 50-dB SPL tone; and (3) the four soft tones plus an 80-dB SPL tone. The results were well described by a top-down, nonlinear gain-control system in which the amplifier’s gain depended on the highest intensity in the stimulus set. Individual participants’ identification judgments were generally compatible with an equal-variance signal-detection model in which the mean locations of the distribution of effects along the decision axis were determined by the operation of this nonlinear amplification system.  相似文献   

15.
Two experiments are reported in which difference limens (DLs) were measured for onset times of a 1000-Hz tone pulse. An adaptive two-alternative forced-choice procedure and (mostly) well-trained subjects were used. In the first experiment, DLs were measured for the rise time of linear onset ramps at rise-time values between 10 and 60 msec. The DLs follow Weber's law up to a rise time of about 50 msec, and do not support the notion that rise times are perceived in a categorical manner. In the second experiment, DLs were obtained for linear, exponential, and raised-cosine onset envelopes at rise-time values between 10 and 40 msec. When energy differences in the critical band around 1000 Hz are computed for just-discriminable onsets, values between 0.7 dB (10-msec rise time) and 0.3 dB (40-sec rise time) are found. These equivalent intensity DLs show the same "near miss to Weber's law" behavior as do intensity DLs for pure tones.  相似文献   

16.
Two choice-reaction time studies assessed the influence of stimulus-response mapping, stimulus complexity, and stimulus alignment on adults’ discrimination of mirror-image and nonmirror-image stimulus pairs. Half the subjects in Experiment 1 were instructed to treat nonmiiTor pairs as “same” and mirror pairs as “different”; the other half responded in the opposite manner. The first group responded more quickly to nonmirror pairs, while the second group responded more quickly to mirror pairs. This result, which held for horizontal stimuli (side by side) as well as for vertical stimuli (one above the other), confirms the importance of experiential factors in mirror-image “confusions. “ In Experiment 2. stimuli were drawn from a population of patterns whose complexity could be objectively defined. In general, the more complex the pattern, the slower the response and complexity seemed to influence the qualitative nature of pattern processing. In both experiments, subjects responded more quickly to horizontal stimuli than to vertical stimuli.  相似文献   

17.
The application of the power-spectrum model of masking to the detectability of a signal masked by dichotic noise was investigated in three experiments. In each experiment, the signal was a 2-kHz sinusoid of 400-msec duration, masked by either one or two 800-Hz wide bands of noise presented singly or in pairs. In Experiment 1, we compared the detectability of a diotic signal masked by dichotic noise with the detectability of a monaural signal masked by each of the noises separately. The spectrum level of the noise was 35 dB SPL. For dichotic presentations, the signal was sent to both ears while pairs of noise bands, one below and one above the signal frequency, were presented together, one band to each ear. Threshold levels with the dichotic stimuli were lower than or equal to the thresholds with either ear's stimulus on its own. Similar dichotic stimuli were used in Experiment 2, except that the signal frequency was nearer to one or the other of the bands of masking noise, and the noise had a spectrum level of 50 dB SPL. In Experiment 3, thresholds were obtained with two sets of symmetrically and asymmetrically placed notched-noise maskers. For one of these sets, the spectrum level of both noise bands was 35 dB SPL; for the other set, interaural intensity differences were introduced in the form of an inequality in the levels of the noise bands on either side of the signal. In one ear, the spectrum level of the lower frequency noise band was 35 dB SPL and the spectrum level of the higher frequency noise band was 25 dB SPL, whereas in the other ear, the allocation of noise level to noise band was reversed. The dichotic thresholds obtained with the unequal noise maskers could be predicted from the shapes of the auditory filters derived with equal noise maskers. The data from all three experiments suggest that threshold signal levels in the presence of interaural differences in masker intensity depend principally on the ear with the higher signal-to-masker ratio at the output of its auditory filter, a finding consistent with the power-spectrum model of masking.  相似文献   

18.
The audiograms of two wood rats and three grasshopper mice were determined with a conditioned avoidance procedure. The wood rats were able to hear tones from 940 Hz to 56 kHz at a level of 60 dB (SPL), with their best sensitivity of -3 dB occurring at 8 kHz. The hearing of the grasshopper mice ranged from 1.85 kHz to 69 kHz at 60 dB (SPL), with their best sensitivity of 9 dB also occurring at 8 kHz. These results support the relation between interaural distance and high-frequency hearing and between high- and low-frequency hearing. The inability of the grasshopper mouse to hear low frequencies as well as other desert rodents such as kangaroo rats and gerbils demonstrates that not all rodents found in deserts have developed good low-frequency hearing. The degree to which general and specific selective pressures have played a role in the evolution of rodent hearing is discussed.  相似文献   

19.
Duplex perception, a phenomenon previously demonstrated for speech stimuli, is demonstrated here for musical stimuli. In the first experiment, major and minor chords are produced by dichotic fusion of two simultaneous piano notes presented to one ear (perfect fifth) with a “natural” or “flat” single note presented to the opposite ear. Musically trained subjects perceive simultaneously both the single tone and a fused (major or minor) chord. The chords are labeled more consistently than the single notes, even though the fused chords differ solely in terms of the contralateral notes. In a second experiment, using pure tones in place of piano notes, other musically trained subjects individually exhibited categorical perception for either the fused chord or the single tones, but never for both types of stimuli. The duplex phenomenon is discussed in terms of its implications for its specific component modes of perception.  相似文献   

20.
A pure tone was used to mask narrow and wide bands of noise centered on the frequency of the tone. In a given experimental session, the sound-pressure level (SPL) of the tone was held constant and loudness balances were obtained between a masked and unmasked noise band of equal width. These results are compared to earlier measures of the partial masking of tone by noise. The comparison shows that noise masks a tone more effectively than the tone masks the noise. Although the effect of the tone on a critical band of noise is greater than its effect on either an octave-band noise or wide-band noise, it is considerably smaller than the effect of the noise on the tone. Decreasing the noise bandwidth still further to a subcritical width reduces the asymmetry of masking somewhat, but a difference at high intensities of about 20 dB between the masking effects of an equally intense noise and tone remains. Whether the masker is a tone or noise, masking ceases when the effective energy of the masked and masking stimuli is the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号