首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ingle D 《Perception》2005,34(9):1135-1151
Phenomena associated with 'central visual persistences' (CPs) are new to both medical and psychological literature. Five subjects have reported similar CPs: positive afterimages following brief fixation of high-contrast objects or drawings and eye closure. CPs duplicate shapes and colors of single objects, lasting for about 15 s. Unlike retinal afterimages, CPs do not move with the eyes but are stable in extrapersonal space during head or body rotations. CPs may reflect sustained neural activity in neurons of association cortex, which mediate object perception. A remarkable finding is that CPs can be moved in any direction by the (unseen) hand holding the original seen object. Moreover, a CP once formed will 'jump' into an extended hand and 'stick' in that hand as it moves about. The apparent size of a CP of a single object is determined by the size of the gap between finger and thumb, even when no object is touched. These CPs can be either magnified or minified via the grip of the extended hand. The felt orientation of the hand-held object will also determine the orientation of the CP seen in that hand. Thus, kinesthetic signals from hand and arm movements can determine perceived location, size, and orientation of CPs. A neural model based on physiological studies of premotor, temporal, parietal, and prefrontal cortices is proposed to account for these novel phenomena.  相似文献   

2.
Perceiving an event requires the integration of its features across numerous brain maps and modules. Visual object perception is thought to be mediated by a ventral processing stream running from occipital to inferotemporal cortex, whereas most spatial processing and action control is attributed to the dorsal stream connecting occipital, parietal, and frontal cortex. Here we show that integration operates not only on ventral features and objects, such as faces and houses, but also across ventral and dorsal pathways, binding faces and houses to motion and manual action. Furthermore, these bindings seem to persist over time, as they influenced performance on future task-relevant visual stimuli. This is reflected by longer reaction times for repeating one, but alternating other features in a sequence, compared to complete repetition or alternation of features. Our findings are inconsistent with the notion that the dorsal stream is operating exclusively online and has no access to memory.  相似文献   

3.
Information about object-associated manipulations is lateralized to left parietal regions, while information about the visual form of tools is represented bilaterally in ventral occipito-temporal cortex. It is unknown how lateralization of motor-relevant information in left-hemisphere dorsal stream regions may affect the visual processing of manipulable objects. We used a lateralized masked priming paradigm to test for a right visual field (RVF) advantage in tool processing. Target stimuli were tools and animals, and briefly presented primes were identical to or scrambled versions of the targets. In Experiment 1, primes were presented either to the left or to the right of the centrally presented target, while in Experiment 2, primes were presented in one of eight locations arranged radially around the target. In both experiments, there was a RVF advantage in priming effects for tool but not for animal targets. Control experiments showed that participants were at chance for matching the identity of the lateralized primes in a picture?Cword matching experiment and also ruled out a general RVF speed-of-processing advantage for tool images. These results indicate that the overrepresentation of tool knowledge in the left hemisphere affects visual object recognition and suggests that interactions between the dorsal and ventral streams occurs during object categorization.  相似文献   

4.
Processing within the dorsal visual stream subserves object-directed action, whereas visual object recognition is mediated by the ventral visual stream. Recent findings suggest that the computations performed by the dorsal stream can nevertheless influence object recognition. Little is known, however, about the type of dorsal stream information that is available to assist in object recognition. Here, we present a series of experiments that explored different psychophysical manipulations known to bias the processing of a stimulus toward the dorsal visual stream in order to isolate its contribution to object recognition. We show that elongated-shaped stimuli, regardless of their semantic category and familiarity, when processed by the dorsal stream, elicit visuomotor grasp-related information that affects how we categorize manipulable objects. Elongated stimuli may reduce ambiguity during grasp preparation by providing a coarse cue to hand shaping and orientation that is sufficient to support action planning. We propose that this dorsal-stream-based analysis of elongation along a principal axis is the basis for how the dorsal visual object processing stream can affect categorization of manipulable objects.  相似文献   

5.
Wilson KD  Farah MJ 《Perception》2006,35(10):1351-1366
A fundamental but unanswered question about the human visual system concerns the way in which misoriented objects are recognized. One hypothesis maintains that representations of incoming stimuli are transformed via parietally based spatial normalization mechanisms (eg mental rotation) to match view-specific representations in long-term memory. Using fMRI, we tested this hypothesis by directly comparing patterns of brain activity evoked during classic mental rotation and misoriented object recognition involving everyday objects. BOLD activity increased systematically with stimulus rotation within the ventral visual stream during object recognition and within the dorsal visual stream during mental rotation. More specifically, viewpoint-dependent activity was significantly greater in the right superior parietal lobule during mental rotation than during object recognition. In contrast, viewpoint-dependent activity was significantly greater in the right fusiform gyrus during object recognition than during mental rotation. In addition to these differences in viewpoint-dependent activity, object recognition and mental rotation produced distinct patterns of brain activity, independent of stimulus rotation: object recognition resulted in greater overall activity within ventral stream visual areas and mental rotation resulted in greater overall activity within dorsal stream visual areas. The present results are inconsistent with the hypothesis that misoriented object recognition is mediated by structures within the parietal lobe that are known to be involved in mental rotation.  相似文献   

6.
We investigated the consequences of premature birth on the functional neuroanatomy of the dorsal stream of visual processing. fMRI was recorded while sixteen healthy participants, 8 (two men) adults (19 years 6 months old, SD 10 months) born premature (mean gestational age 30 weeks), referred to as Premas, and 8 (two men) matched controls (20 years 1 month old, SD 13 months), performed a 1-back memory task of Object or Grip information using a hand grasping a drinking vessel as stimulus. While history of prematurity did not significantly affect task performance, Group by Task analysis of variance in regions of interest spanning the occipital, temporal and parietal lobes revealed main effects of Task and interactions between the two factors. Object processing activated the left inferior occipital cortex and bilateral ventral temporal regions, belonging to the ventral stream, with no effect of Group. Grip processing across groups activated the early visual cortex and the left supramarginal gyrus belonging to the dorsal stream. Group effect on the brain activity during Grip suggested that Controls represented the actions’ goal while Premas relied more on low-level visual information. This shift from higher- to lower-order visual processing between Controls and Premas may reflect a more general trend, in which Premas inadequately recruit higher-order visual functions for dorsal stream task performance, and rely more on lower-level functions.  相似文献   

7.
赵乐  冉光明  陈旭 《心理科学》2014,37(3):567-572
视觉预期是一种运用视觉信息的部分资源和先行资源对即将发生的事件进行预测的能力。为了人们更加清楚地认识视觉预期的内在加工过程,同时也有助于国内外研究者更为科学深入地探讨这种自上而下的加工,本文主要从婴幼儿和成人运动员两方面来阐述视觉预期的相关研究。首先从婴幼儿对物体相关属性和行为目标的视觉预期两方面探讨了视觉预期的类型,然后论述了成人视觉预期的神经机制。最后,指出今后的研究应加强视觉预期相关技术在临床诊断中的应用,注重环境在视觉预期中的作用,从神经网络角度研究视觉预期的神经基础。  相似文献   

8.
Recent research has shown that saccadic eye movements interfere with dorsal-stream tasks such as judgments of object orientation, but not with ventral-stream tasks such as object recognition. Because saccade programming and execution also rely on the dorsal stream, it has been hypothesized that cognitive saccadic suppression occurs as a result of dual-task interference within the dorsal stream. Judging whether one number is larger or smaller than another (magnitude comparison) is a dorsal-stream task that relies especially on the right parietal cortex. In contrast, judging whether a number is odd or even (parity judgment) does not involve the dorsal stream. In the present study, one group of subjects judged whether two-digit numbers were greater than or less than 65, whereas another group judged whether two-digit numbers were odd or even. Subjects in both groups made these judgments while making no, short, or long saccades. Saccade distance had no effect on parity judgments, but reaction times to make magnitude comparison judgments increased with saccade distance when the eyes moved from right to left. Because the right parietal cortex is instrumental in generating leftward saccades, these results provide further evidence for the hypothesis that cognitive suppression during saccades occurs as a result of dual-task interference within the dorsal stream.  相似文献   

9.
Visual system has been proposed to be divided into two, the ventral and dorsal, processing streams. The ventral pathway is thought to be involved in object identification whereas the dorsal pathway processes information regarding the spatial locations of objects and the spatial relationships among objects. Several studies on working memory (WM) processing have further suggested that there is a dissociable domain-dependent functional organization within the prefrontal cortex for processing of spatial and nonspatial visual information. Also the auditory system is proposed to be organized into two domain-specific processing streams, similar to that seen in the visual system. Recent studies on auditory WM have further suggested that maintenance of nonspatial and spatial auditory information activates a distributed neural network including temporal, parietal, and frontal regions but the magnitude of activation within these activated areas shows a different functional topography depending on the type of information being maintained. The dorsal prefrontal cortex, specifically an area of the superior frontal sulcus (SFS), has been shown to exhibit greater activity for spatial than for nonspatial auditory tasks. Conversely, ventral frontal regions have been shown to be more recruited by nonspatial than by spatial auditory tasks. It has also been shown that the magnitude of this dissociation is dependent on the cognitive operations required during WM processing. Moreover, there is evidence that within the nonspatial domain in the ventral prefrontal cortex, there is an across-modality dissociation during maintenance of visual and auditory information. Taken together, human neuroimaging results on both visual and auditory sensory systems support the idea that the prefrontal cortex is organized according to the type of information being maintained in WM.  相似文献   

10.
We investigated dorsal visual stream involvement in the retrieval of a variety of visual attributes of common objects, using functional magnetic resonance imaging. Seven subjects made binary decisions about the shape, color, and size of named objects during scanning. Bilateral parietal activity was significantly greater during retrieval of shape and size information than during retrieval of color information. Consistent with a domain-specific distributed model of semantic organization, the finding that dorsal stream activity is associated with size and shape retrieval, as compared with color retrieval, may indicate that both size and shape information are learned partly through dorsally mediated processes, such as visually guided grasping. These results demonstrate that both visual-processing streams (i.e., the ventral “what” pathway and the dorsal “where” pathway) are involved in the storage and/or retrieval of knowledge of object appearance but that, just as in vision, these two pathways may play different roles in conceptual processing.  相似文献   

11.
The visual system historically has been defined as consisting of at least two broad subsystems subserving object and spatial vision. These visual processing streams have been organized both structurally as two distinct pathways in the brain, and functionally for the types of tasks that they mediate. The classic definition by Ungerleider and Mishkin labeled a ventral "what" stream to process object information and a dorsal "where" stream to process spatial information. More recently, Goodale and Milner redefined the two visual systems with a focus on the different ways in which visual information is transformed for different goals. They relabeled the dorsal stream as a "how" system for transforming visual information using an egocentric frame of reference in preparation for direct action. This paper reviews recent research from psychophysics, neurophysiology, neuropsychology and neuroimaging to define the roles of the ventral and dorsal visual processing streams. We discuss a possible solution that allows for both "where" and "how" systems that are functionally and structurally organized within the posterior parietal lobe.  相似文献   

12.
How do humans use target-predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, humans can learn that a certain combination of objects may define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. The ARTSCENE Search model is developed to illustrate the neural mechanisms of such memory-based context learning and guidance and to explain challenging behavioral data on positive-negative, spatial-object, and local-distant cueing effects during visual search, as well as related neuroanatomical, neurophysiological, and neuroimaging data. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined as a scene is scanned with saccadic eye movements. The model simulates the interactive dynamics of object and spatial contextual cueing and attention in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortex (area 46) primes possible target locations in posterior parietal cortex based on goal-modulated percepts of spatial scene gist that are represented in parahippocampal cortex. Model ventral prefrontal cortex (area 47/12) primes possible target identities in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex.  相似文献   

13.
The roles of dorsal and ventral processing streams in visual orienting and conscious perception were examined in two experiments. The first employed high density EEG with source localization. The second comprised a neuropsychological case study. Visual orienting was assessed with an attention procedure, where peripheral letters cued participants towards a target location. In the perception procedure participants responded to the same letters by performing an explicit conscious discrimination. In Experiment 1, the peripheral letters elicited rapid dorsal stream activation in the attention procedure, and this activation preceded top-down enhancement of target processing in occipital cortex. In the perception procedure early ventral stream activation was seen. In addition, peripheral letters elicited an “early directing attention negativity” (EDAN) over parietal recording sites in the attention procedure, but not in the perception procedure. In Experiment 2, a patient with a bilateral ventral stream lesion but preserved dorsal stream function showed clear disruption to performance in the perception procedure, whilst exhibiting a normal visual orienting effect in the attention procedure. Taken together these findings (1) highlight the distinct roles of the dorsal and ventral streams in attention and perception, and (2) suggest how these streams might interact, via reentrant effects of attention on perceptual processing.  相似文献   

14.
Brogaard  Berit 《Synthese》2020,198(17):3943-3967

For almost half a century dual-stream advocates have vigorously defended the view that there are two functionally specialized cortical streams of visual processing originating in the primary visual cortex: a ventral, perception-related ‘conscious’ stream and a dorsal, action-related ‘unconscious’ stream. They furthermore maintain that the perceptual and memory systems in the ventral stream are relatively shielded from the action system in the dorsal stream. In recent years, this view has come under scrutiny. Evidence points to two overlapping action pathways: a dorso-dorsal pathway that calculates features of the object to be acted on, and a ventro-dorsal pathway that transmits stored information about skilled object use from the ventral stream to the dorso-dorsal pathway. This evidence suggests that stored information may exert significantly more influence on visually guided action than hitherto assumed. I argue that this, in turn, supports the notion of skilled automatic action that is nonetheless agential. My focus here will be on actions influenced by implicit biases (stereotypes/prejudices). Action that is biased in this way, I argue, is in an important sense intentional and agential.

  相似文献   

15.
In reading music, the acquisition of pitch information depends mostly on the spatial position of notes, hence more spatial processing, whereas the acquisition of temporal information depends mostly on the visual features of notes and object recognition. This study used both electrophysiological and behavioral methods to compare the processing of pitch and duration in reading single musical notes. It was observed that in the early stage of note reading, identification of pitch could elicit greater N1 and N2 amplitude than identification of duration at the parietal lobe electrodes. In the later stages of note reading, identifying pitch elicited a greater negative slow wave at parietal electrodes than did identifying note duration. The sustained contribution of parietal processes for pitch suggests that the dorsal pathway is essential for pitch processing. However, the duration task did not elicit greater amplitude of any early ERP components than the pitch task at temporal electrodes. Accordingly, a double dissociation, suggesting involvement of the dorsal visual stream, was not observed in spatial pitch processing and ventral visual stream in processing of note durations.  相似文献   

16.
周爱保  申莎蒋强 《心理科学》2017,40(6):1335-1339
示能性(affordance)概念解释了人的行为与物体功能之间互动、互补的关系。但是,有关示能性生理基础却很少被提及。镜像神经元的发现为示能性生理基础提供了可能的解释。文章根据研究将示能性分为结构示能性和功能示能性,探讨了不同示能性和镜像神经元之间的关系,并提出不同神经通路中的镜像神经元是示能性生理基础的结论。背-背侧分流中的镜像神经元是结构示能性的神经基础,而腹-背侧分流中的镜像神经元是功能示能性的神经基础。  相似文献   

17.
This review pursues the idea that a dual visual system approach is fruitful for interpreting work on infant cognition. We provide examples from the visual perception and cognition literature demonstrating that the potential graspability of stimuli typically used in infant studies influence how these stimuli are processed by the infant brain. Specifically, we argue that small, local, familiar and moving stimuli are more likely to be processed by the dorsal (how or action) stream of visual processing. In contrast, larger, stationary objects are likely to be processed by the ventral (what or perception) stream. This analysis clarifies apparently conflicting results in the literature.  相似文献   

18.
This paper presents the case of MT, a patient suffering from apraxia with left-hemisphere damage who showed a selective deficit in mentally rotating images of hands whereas he was still able to mentally rotate other visual stimuli. The deficit was particularly evident when MT was asked to decide which hand (left or right) was represented in a picture. suggested that in order to carry out this task, participants would mentally rotate a representation of their own body part until it aligns with the stimulus and it does appear that MT's ability to mentally simulate movements is impaired. In contrast, he was able to mentally rotate other forms of bi- and three-dimensional stimuli. Our findings are also consistent with proposal that there are at least two ways in which objects can be mentally rotated, one that recruits processes devoted to motor preparation (e.g., hands), and another that does not.  相似文献   

19.
Current views of the parietal cortex have difficulty accommodating the human inferior parietal lobe (IPL) within a simple dorsal versus ventral stream dichotomy. In humans, lesions of the right IPL often lead to syndromes such as hemispatial neglect that are seemingly in accord with the proposal that this region has a crucial role in spatial processing. However, recent imaging and lesion studies have revealed that inferior parietal regions have non-spatial functions, such as in sustaining attention, detecting salient events embedded in a sequence of events and controlling attention over time. Here, we review these findings and show that spatial processes and the visual guidance of action are only part of the repertoire of parietal functions. Although sub-regions in the human superior parietal lobe and intraparietal sulcus contribute to vision-for-action and spatial functions, more inferior parietal regions have distinctly non-spatial attributes that are neither conventionally 'dorsal' nor conventionally 'ventral' in nature.  相似文献   

20.
The idea that there are two distinct cortical visual pathways, a dorsal action stream and a ventral perception stream, is supported by neuroimaging and neuropsychological evidence. Yet there is an ongoing debate as to whether or not the action system is resistant to pictorial illusions in healthy participants. In the present study, we disentangled the effects of real and illusory object size on action and perception by pitting real size against illusory size. In our task, two objects that differed slightly in length were placed within a version of the Ponzo illusion. Even though participants erroneously perceived the physically longer object as the shorter one (or vice versa), their grasping was remarkably tuned to the real size difference between the objects. These results provide the first demonstration of a double dissociation between action and perception in the context of visual illusions and together with previous findings converge on the idea that visually guided action and visual perception make use of different metrics and frames of reference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号