首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serial reaction time (SRT) task was used to compare learning of a complex sequence by action (participants responded to sequential stimuli), by observation (participants watched but did not respond to sequential stimuli), and by action‐observation (participants watched an expert model responding to sequential stimuli). Each of these groups was compared with an untrained control group. Experiment 1 indicated that both observation and action‐observation were sufficient to support learning of a 12‐item second‐order conditional (SOC) sequence. Experiment 2 confirmed these findings, and showed that, as indexed by reaction time (RT), the extent of learning by observation and by action‐observation was comparable to that of action‐based learning. Using a recognition test, Experiment 2 and 3 also provided evidence that, whereas learning by stimulus observation was explicit, learning by action‐observation was implicit. These findings are consistent with a connection between motor systems and implicit learning, but do not support the hypothesis that overt action is necessary for implicit learning.  相似文献   

2.
An experiment was conducted to determine the coordinate system used in the development of movement codes during observation and utilized on later physical practice performance of a simple spatial-temporal movement sequence. The task was to reproduce a 1.3-s spatial-temporal pattern of elbow flexions and extensions. An intermanual transfer paradigm with a retention test and two transfer tests was used: a mirror transfer test where the same pattern of muscle activation and limb joint angles was required and a nonmirror transfer test where the visual-spatial pattern of the sequence was reinstated on the transfer test. The results indicated a strong advantage for participants in the physical practice condition when transferred to the mirror condition in which the motor coordinates (e.g., pattern of muscle activation and joint angles) were reinstated relative to transfer performance when the visual-spatial coordinates were reinstated (visual and spatial location of the target waveform). The observation group, however, demonstrated an advantage when the visual-spatial coordinates were reinstated. These results demonstrate that codes based in motor coordinates can be developed relatively quickly for simple rapid movement sequences when participants are provided physical practice, but observational practice limits the system to the development of codes based in visual-spatial coordinates. Performances of control participants, who were not permitted to practise or observe the task, were quite poor on all tests.  相似文献   

3.
An experiment was conducted to determine the coordinate system used in the development of movement codes during observation and utilized on later physical practice performance of a simple spatial–temporal movement sequence. The task was to reproduce a 1.3-s spatial–temporal pattern of elbow flexions and extensions. An intermanual transfer paradigm with a retention test and two transfer tests was used: a mirror transfer test where the same pattern of muscle activation and limb joint angles was required and a nonmirror transfer test where the visual–spatial pattern of the sequence was reinstated on the transfer test. The results indicated a strong advantage for participants in the physical practice condition when transferred to the mirror condition in which the motor coordinates (e.g., pattern of muscle activation and joint angles) were reinstated relative to transfer performance when the visual–spatial coordinates were reinstated (visual and spatial location of the target waveform). The observation group, however, demonstrated an advantage when the visual–spatial coordinates were reinstated. These results demonstrate that codes based in motor coordinates can be developed relatively quickly for simple rapid movement sequences when participants are provided physical practice, but observational practice limits the system to the development of codes based in visual–spatial coordinates. Performances of control participants, who were not permitted to practise or observe the task, were quite poor on all tests.  相似文献   

4.
In the Serial Reaction Time (SRT) task, participants respond to a set of stimuli the order of which is apparently random, but which consists of repeating sub‐sequences. Participants can become sensitive to this regularity, as measured by an indirect test of reaction time, but can remain apparently unaware of the sequence, as measured by direct tests of prediction or recognition. Some researchers have claimed that this learning may take place by observation alone. We suggest that observational learning may be due to explicit acquired knowledge of the sequence, and is not mediated by the same processes which give rise to learning by action. In Expt 1, we show that it is very difficult to acquire explicit sequence knowledge under dual task conditions, even when participants are told that a regular sequence exists. In Expt 2, we use the same conditions to compare actors, who respond to the sequence during learning, and observers, who merely watch the stimuli. Furthermore, we manipulate the salience of the sequence, in order to encourage learning. There is no evidence of observational learning in these conditions, despite the usual effects of learning being demonstrated by actors. In Expt 3, we show that observational learning does occur, but only when observers have no secondary task and even then only reliably for a sequence which has been made salient by chunking subcomponents. We conclude that sequence learning by observation is mediated by explicit processes, and is eliminated under conditions which support learning by action, but make it difficult to acquire explicit knowledge.  相似文献   

5.
Two experiments were designed to determine participants' ability to transfer a learned movement sequence to new spatial locations. A 16-element dynamic arm movement sequence was used in both experiments. The task required participants to move a horizontal lever to sequentially projected targets. Experiment 1 included two groups. One group practised a relatively easy 16-element movement sequence (easy long). The other group practised a more difficult 16-element movement sequence (difficult long). Approximately 24 hours after practice with their respective sequence both groups were administered a retention and two transfer tests. The only difference between the retention and transfer tests was the location of the targets. The short transfer target configuration was considered a proportional transfer because all the amplitudes between targets were reduced by the same proportion. The mixed transfer configuration was considered a nonproportional transfer because the targets did not have the same proportional distances between targets as the sequence they practised. The results indicated that participants could effectively transfer the difficult long sequence to the new target configurations regardless of whether the transfer required proportional and nonproportional spatial changes to the movement pattern. However, the easy long sequence was only effectively transferred in the proportional transfer condition. Experiment 2 assessed the effects of extended practice of the easy long sequence on proportional and nonproportional spatial transfer. The data indicated that participants could again effectively transfer the easy long sequence to proportional but not the nonproportional spatial transfer conditions regardless of the amount of practice (1 or 4 days). The results are discussed in terms of the mechanism by which response sequences become increasingly specific over extended practice in an attempt to optimize movement production and how this process interacts with the difficulty of the sequence.  相似文献   

6.
Two experiments were designed to determine participants' ability to transfer a learned movement sequence to new spatial locations. A 16-element dynamic arm movement sequence was used in both experiments. The task required participants to move a horizontal lever to sequentially projected targets. Experiment 1 included two groups. One group practised a relatively easy 16-element movement sequence (easy long). The other group practised a more difficult 16-element movement sequence (difficult long). Approximately 24 hours after practice with their respective sequence both groups were administered a retention and two transfer tests. The only difference between the retention and transfer tests was the location of the targets. The short transfer target configuration was considered a proportional transfer because all the amplitudes between targets were reduced by the same proportion. The mixed transfer configuration was considered a nonproportional transfer because the targets did not have the same proportional distances between targets as the sequence they practised. The results indicated that participants could effectively transfer the difficult long sequence to the new target configurations regardless of whether the transfer required proportional and nonproportional spatial changes to the movement pattern. However, the easy long sequence was only effectively transferred in the proportional transfer condition. Experiment 2 assessed the effects of extended practice of the easy long sequence on proportional and nonproportional spatial transfer. The data indicated that participants could again effectively transfer the easy long sequence to proportional but not the nonproportional spatial transfer conditions regardless of the amount of practice (1 or 4 days). The results are discussed in terms of the mechanism by which response sequences become increasingly specific over extended practice in an attempt to optimize movement production and how this process interacts with the difficulty of the sequence.  相似文献   

7.
Action imagery practice (AIP) is effective to improve motor performance in a variety of tasks, though it is often less effective than action execution practice (AEP). In sequence learning, AIP and AEP result in the acquisition of effector-independent representations. However, it is unresolved whether effector-dependent representations can be acquired in AIP. In the present study, we investigated the acquisition of effector-independent representations and effector-dependent representations in AEP and AIP in an implicit sequence learning task (a visual serial-reaction-time task, involving a twelve-element sequence). Participants performed six sessions, each starting with tests. A practice sequence, a mirror sequence, and a different sequence were tested with the practice and transfer hand. In the first four sessions, after the tests, two groups performed either AIP (N = 50) or AEP (N = 54). Improvement in the different sequence indicated sequence-unspecific learning in both AEP and AIP. Importantly, reaction times of the practice hand became shorter in the practice sequence than in the other sequences, indicating implicit sequence learning in both, AEP and AIP. This effect was stronger in the practice hand than in the transfer hand, indicating effector-dependent sequence representations in both AEP and AIP. However, effector-dependent sequence representations were stronger in AEP than in AIP. No significant differences between groups were observed in the transfer hand, although effector-independent sequence representations were observed in AEP only. In conclusion, AIP promotes not only sequence-unspecific stimulus-response coupling and anticipations of the subsequent stimuli, but also anticipations of the subsequent responses.  相似文献   

8.
The authors examined whether reduced knowledge of results (KR) frequency during observation of a model's performance enhances learning. As they viewed a timing task, observers (n = 54) received KR about the model's performance on each trial (100% KR) or on 1 out of 3 trials (33% KR). Controls (n = 18) received only physical practice; they did not take part in the observation session. The authors also wanted to dissociate the guidance effect of KR during physical practice from the guidance role played by the representation acquired during observation. Therefore, following the observation phase, participants physically performed the task with either the same or a different KR frequency than that experienced during observation. The effects of observation and physical practice on learning were assessed in delayed retention tests. The beneficial effect of reduced KR frequency during observation continued for the following physical practice phases. Possible explanations as to why KR influences observational learning are discussed.  相似文献   

9.
We compared varied model types and their potential differential effects on learning outcomes and consolidation processes when observational practice was interspersed with physical practice. Participants (N = 75) were randomly assigned to one of five groups: (1) unskilled model observation, (2) skilled model observation, (3) mixed-model observation, (4) physical practice only, and (5) no observational or physical practice (control). All were tasked with learning a waveform-matching task. With exception of the control group not involved in acquisition sessions, participants were involved in one pre-test, two acquisition sessions, four retention tests (immediate-post acquisition 1, 24hr post acquisition 1, immediate-post acquisition 2, and approximate 7-day retention), as well as an approximate 7-day transfer test. No differences were demonstrated in consolidation processes or learning outcomes as all groups showed the same pattern of retention and transfer data. Our conclusion is that motor memory processes were not impacted differentially when different models types were used in observational practice that was intermixed with physical practice for the learning of a movement pattern with low task difficulty, and thus similar learning outcomes emerged for all groups.  相似文献   

10.
The present experiment examined learning of a three-segment movement sequence using physical or observational practice, and whether permitting eye movements to be made during observation is a prerequisite for learning such a movement sequence. Specifically, participants were required to move a mouse cursor through a three-segment movement sequence in order to satisfy one of three movement time goals (800, 1000, 1200 ms). A yoked-participant design was used in which a physical practice group acted as a learning model, which was viewed simultaneously by two groups that carried out different observational practice procedures. An observation group was permitted to move their eyes whilst observing the model, whereas the fixation group was instructed to maintain fixation on a central target. The difference between pre-test and post-test data indicated that all the three experimental groups significantly altered their timing accuracy, variability and movement kinematics over practice, while the control group’s behaviour was unchanged. These data indicate that movement time as well as the underlying movement control was learned following observation of a movement with or without an explicit contribution from eye movements, albeit to a lesser extent during the final segment of the sequence when compared to the physical practice group. The implication is that while similar processes might normally be involved in physical and observational practice, information afforded by eye movements during observation (e.g., efference copy and eye proprioception) is not necessary for movement sequence learning.  相似文献   

11.
A 16-element movement sequence was taught under part-whole and whole-practice conditions. Participants (N = 18) produced a right-arm lever movement to sequentially presented target locations. The authors constructed part-whole practice by providing practice on only the 1st 8 elements on the 1st day of practice (100 repetitions of the 8-element sequence) and on all 16 elements on the 2nd day of practice (100 repetitions of the 16-element sequence). The whole-practice group practiced all 16 elements on both days (100 repetitions of the 16-element sequence per day). No differences in sequence structure or in movement duration of the 16-element sequence were noted on the retention test (Day 3). On transfer tests in which the 1st and last 8 elements were tested separately, however, the participants in the part-whole practice group performed more quickly than the participants in the whole-practice group, especially on the last 8 elements. Participants in the whole-practice group appeared to code the sequence so that it was relatively difficult to fully partition it into separate movements. Thus, on the transfer tests, there continued to be residual effects of the 8 elements that did not have to be produced but slowed down the rate of responding for the whole-practice group. That finding was not observed for the part-whole practice group.  相似文献   

12.
Two experiments were designed to determine participants' ability to transfer a learned movement sequence to new spatial locations. A 16-element dynamic arm movement sequence was used in both experiments. The task required participants to move a horizontal lever to sequentially projected targets. Experiment 1 included 2 groups. One group practised a pattern in which targets were located at 20, 40, 60, and 80° from the start position (long sequence). The other group practised a pattern with targets at 20, 26.67, 60, and 80° (mixed sequence). Both groups were tested 24 hours later on the long, mixed, and short sequence. The short sequence was considered a proportional transfer for the long acquisition group because all the amplitudes between targets were reduced by the same proportion. Nonproportional transfer occurred when the amplitudes between targets did not have the same proportions as those for their practice sequence (e.g., long sequence to mixed sequence or vice versa). The results indicated that participants could effectively transfer to new target configurations regardless of whether the transfer required proportional or nonproportional spatial changes to the movement pattern. Experiment 2 assessed the effects of extended practice on proportional and nonproportional spatial transfer. The data indicated that while participants can effectively transfer to both proportional and nonproportional spatial transfer conditions after 1 day of practice, they are only effective at transferring to proportional transfer conditions after 4 days of practice. The results are discussed in terms of the mechanism by which response sequences become increasingly specific over extended practice in an attempt to optimize movement production.  相似文献   

13.
In a bimanual-bisequential version of the serial reaction time (SRT) task participants performed two uncorrelated key-press sequences simultaneously, one with fingers of the left hand and the other with fingers of the right hand. Participants responded to location-based imperative stimuli. When two such stimuli appeared in each trial, the results suggest independent learning of the two sequences and the occurrence of intermanual transfer. Following extended practice in Experiment 2, transfer of acquired sequence knowledge was not complete. Also in Experiment 2, when only one stimulus appeared in each trial specifying the responses for both hands so that there was no basis for separate stimulus-stimulus or separate response-effect learning, independent sequence learning was again evident, but there was no intermanual transfer at all. These findings suggest the existence of two mechanisms of sequence learning, one hand-related stimulus-based and the other motor-based, with only the former allowing for intermanual transfer.  相似文献   

14.
The purpose of this study was to determine the extent to which participants could effectively switch from on-line (OL) to pre-planned (PP) control (or vice versa) depending on previous practice conditions and whether concurrent visual feedback was available during transfer testing. The task was to reproduce a 2000 ms spatial–temporal pattern of a sequence of elbow flexions and extensions. Participants were randomly assigned to one of two practice conditions termed OL or PP. In the OL condition the criterion waveform and the cursor were provided during movement production while this information was withheld during movement production for the PP condition. A retention test and two effector transfer tests were administered to half of the participants in each acquisition conditions under OL conditions and the other half under PP conditions. The mirror effector transfer test required the same pattern of muscle activation and limb joint angles as required during acquisition. The non-mirror transfer test required movements to the same visual–spatial locations as experienced during acquisition. The results indicated that when visual information was available during the transfer tests performers could switch from PP to OL. When visual information was withdrawn, they shifted from the OL to the PP-control mode. This finding suggests that performers adopt a mode of control consistent with the feedback conditions provided during testing.  相似文献   

15.
Two experiments were designed to determine participants' ability to transfer a learned movement sequence to new spatial locations. A 16-element dynamic arm movement sequence was used in both experiments. The task required participants to move a horizontal lever to sequentially projected targets. Experiment 1 included 2 groups. One group practised a pattern in which targets were located at 20, 40, 60, and 80° from the start position (long sequence). The other group practised a pattern with targets at 20, 26.67, 60, and 80° (mixed sequence). Both groups were tested 24 hours later on the long, mixed, and short sequence. The short sequence was considered a proportional transfer for the long acquisition group because all the amplitudes between targets were reduced by the same proportion. Nonproportional transfer occurred when the amplitudes between targets did not have the same proportions as those for their practice sequence (e.g., long sequence to mixed sequence or vice versa). The results indicated that participants could effectively transfer to new target configurations regardless of whether the transfer required proportional or nonproportional spatial changes to the movement pattern. Experiment 2 assessed the effects of extended practice on proportional and nonproportional spatial transfer. The data indicated that while participants can effectively transfer to both proportional and nonproportional spatial transfer conditions after 1 day of practice, they are only effective at transferring to proportional transfer conditions after 4 days of practice. The results are discussed in terms of the mechanism by which response sequences become increasingly specific over extended practice in an attempt to optimize movement production.  相似文献   

16.
The main purpose of the present experiment was to determine the coordinate system used in the development of movement codes when observational and physical practice are scheduled across practice sessions. The task was to reproduce a 1,300-ms spatial-temporal pattern of elbow flexions and extensions. An intermanual transfer paradigm with a retention test and two effector (contralateral limb) transfer tests was used. The mirror effector transfer test required the same pattern of homologous muscle activation and sequence of limb joint angles as that performed or observed during practice, and the non-mirror effector transfer test required the same spatial pattern movements as that performed or observed. The test results following the first acquisition session replicated the findings of Gruetzmacher, Panzer, Blandin, and Shea (2011) . The results following the second acquisition session indicated a strong advantage for participants who received physical practice in both practice sessions or received observational practice followed by physical practice. This advantage was found on both the retention and the mirror transfer tests compared to the non-mirror transfer test. These results demonstrate that codes based in motor coordinates can be developed relatively quickly and effectively for a simple spatial-temporal movement sequence when participants are provided with physical practice or observation followed by physical practice, but physical practice followed by observational practice or observational practice alone limits the development of codes based in motor coordinates.  相似文献   

17.
This study employed a novel variant of the serial reaction time task, focused on sequencing one element of movement—direction. During the task a repeated pattern of alternating directions (right–left–right, etc.) was embedded in the stimuli, and there was no series of response locations. Responses were made via two effector systems: single-finger responding (necessitates lateral arm movements between response keys), and four-fingered responding (4 individual fingers on 4 individual keys; requires no lateral arm movement). The sequence of directions was only learned by participants who performed lateral movements during training, indicating that learning was contingent on the particular motor effector used. Participants with low levels of sequence awareness displayed the same pattern of results.  相似文献   

18.
Both observational and physical practices support the acquisition of motor skill knowledge in the form of spatiotemporal coordination patterns. The current experiment examined the extent that observation and physical practice can support the transfer of spatiotemporal knowledge and amplitude knowledge associated with motor skills. Evidence from a multijoint limb task revealed that knowledge about spatiotemporal patterns (relative phase) acquired by observers and models can be generalized exceptionally well within the trained arm (right) and across to the untrained arm (left). Transfer of relative phase occurred even when untrained combinations of joint amplitudes were required. This indicates that observation and physical practice both lead to the development of an effector-independent representation of the spatiotemporal knowledge in this task. Both observers and models showed some transfer of the relative amplitude knowledge, with observers demonstrating superior transfer for both a trained and untrained-arm transfer test, while the models were limited to positive transfer on an untrained-arm transfer test. The representation of movement amplitude knowledge is effector-independent in this task, but the use of that knowledge is constrained by the specific practice context and the linkage between the elbow and wrist.  相似文献   

19.
The present study aimed to investigate whether an interference task might impact the sleep-dependent consolidation process of a mentally learned sequence of movements. Thirty-two participants were subjected to a first training session through motor imagery (MI) or physical practice (PP) of a finger sequence learning task. After 2 h, half of the participants were requested to perform a second interfering PP task (reversed finger sequence). All participants were finally re-tested following a night of sleep on the first finger sequence. The main findings revealed delayed performance gains following a night of sleep in the MI group, i.e. the interfering task did not alter the consolidation process, by contrast to the PP group. These results confirm that MI practice might result in less retroactive interference than PP, and further highlight the relevance of the first night of sleep for the consolidation process following MI practice. These data might thus contribute to determine in greater details the practical implications of mental training in motor learning and rehabilitation.  相似文献   

20.
An experiment that utilized a 16-element movement sequence was designed to determine the impact of eye movements on sequence learning. The participants were randomly assigned to two experimental groups: a group that was permitted to use eye movements (FREE) and a second group (FIX) that was instructed to fixate on a marker during acquisition (ACQ). A retention test (RET) was designed to provide a measure of learning, and two transfer tests were designed to determine the extent to which eye movements influenced sequence learning. The results demonstrated that both groups decreased the response time to produce the sequence, but the participants in the FREE group performed the sequence more quickly than participants of the FIX group during the ACQ, RET and the two transfer tests. Furthermore, continuous visual control of response execution was reduced over the course of learning. The results of the transfer tests indicated that oculomotor information regarding the sequence can be stored in memory and enhances response production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号