首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate the development of movement speed in relation to movement organization, children of 5, 6, 7, 8 and 9 years of age and adults carried out a reciprocal tapping task, in which time pressure and distance were manipulated. The duration, velocity, acceleration and accuracy of the movements were compared between age groups. Age differences appeared mainly in the homing time, not in the duration of the distance covering movement phase. Accuracy and velocity of the distance covering movement phase differed with age. Time pressure affected the homing time, but not the duration of the distance covering phase. Distance manipulation affected mainly the velocity and duration of the distance covering movement phase and the homing time. In the discussion it is contended that age differences in homing time may be related to both the accuracy of the distance covering movement phase and the rate of information processing of the subject.  相似文献   

2.
The current experiment suggests that the speed/accuracy tradeoff is composed of two classes of constraints, effector and task. We examined the effects of movement distance, target size, orientation of the movement in the workspace, and C-D gain on the kinematics of discrete pointing movements made with computer mouse. It was found that target size influenced the shape of velocity profiles by elongating the duration of the corrective sub-movement phase, while movement distance scaled the entire velocity curve without affecting its shape. C-D gain and orientation of the movement exhibited two kinds of effects: an overall scaling of the velocity curve and a change in its shape. We conclude that target size is a task constraint and movement distance is an effector constraint, while movement orientation exhibited characteristics of both. C-D gain by itself was not a constraint, but interacted with both task and effector constrains. These results highlight the roles of biomechanical and information processing factors in the speed/accuracy tradeoff.  相似文献   

3.
The goal of the present study was to test the influence of the spatial and temporal dynamics of observed manual actions on infants’ action prediction. Twelve-month-old infants were presented with reach-and-transport actions performed by a human agent. Movement distance, duration, and – resulting from the two – movement velocity were systematically varied. Action prediction was measured via the latency of gaze arrival at target in relation to agent’s hand. The results showed a general effect of all parameters on the infants’ perception of goal-directed actions: Infants were more likely to predict the action goal the longer the movement distance was, the longer the movement duration was, and the slower the movement velocity was. In addition, they were more likely to predict the goal of a reaching than a transport action. The present findings extent previous findings by showing that infants are not only sensitive to differences in distances, durations, and velocities at early age but that these factors have a strong impact on the prediction of the goal of observed actions.  相似文献   

4.
Position sense has been found to decay as a function of the time delay the limb remains in a static position prior to movement onset. Position sense has also been found to deteriorate as a function of aging, with increased reliance on vision by the elderly. This study investigated whether the pointing kinematics of elderly adults were differentially affected by delay compared to young adults, and whether visual information could compensate for the effects of delay. Young and elderly adults kept the limb in a static position for 1, 6, or 10 s prior to movement onset, both with and without vision of the limb, initial position, and the movement trajectory. Across groups, delay resulted in increased overall movement duration, decreased peak velocity including a shorter relative time to peak velocity, with decreased distance and duration of the primary submovement. Delay and lack of vision differentially decreased distance of the primary submovement for elderly adults. Vision was able to compensate to some degree for the effects of delay across age groups. The findings provide evidence that decays in position sense as a function of time create difficulties in incorporating the initial limb position in motor planning process in elderly adults.  相似文献   

5.
This study investigated how accuracy is attained in fast goal-directed arm movements. Subjects were instructed to make arm extension movements over three different distances in random order, with and without visual feedback. Target width was varied proportionally with distance. Movement time was kept as short as possible, but there were well-defined limits with respect to accuracy. There appeared to be a large relative variability (variation coefficient [VC]) in the initial acceleration. The VC in the distance the hand moved during the acceleration phase was much smaller. This reduction was accompanied by a strong negative correlation between the initial acceleration and the duration of the acceleration phase. Further, the VC in the total distance moved was less than the VC in the distance moved during acceleration. This result indicates asymmetry between the acceleration and the deceleration phase. This is confirmed by the negative correlation between the distance the hand moved during acceleration and the distance it moved during deceleration. Withdrawal of visual feedback had a significant effect on movement accuracy. No differences were found in the parameters of the acceleration phase in the two feedback conditions, however. our results point to the existence of a powerful variability compensating mechanism within the acceleration phase. This mechanism seems to be independent of visual feedback; this suggests that efferent information (efference copies) and/or proprioceptive information is/are responsible for the timing of agonist and antagonist activation. The asymmetry between the acceleration and deceleration phase contributes to a reduction in the relative variability in the total distance moved. The fact that the withdrawal of visual feedback affected movement variability only during the deceleration phase indicates that visual information is used in the adjustment of antagonist activity.  相似文献   

6.
The timing of natural prehension movements   总被引:39,自引:0,他引:39  
Prehension movements were studied by film in 7 adult subjects. Transportation of the hand to the target-object location had features very similar to any aiming arm movement, that is, it involved a fast-velocity initial phase and a low-velocity final phase. The peak velocity of the movement was highly correlated with its amplitude, although total movement duration tended to remain invariant when target distance was changed. The low-velocity phase consistently began after about 75% of movement time had elapsed. This ration was maintained for different movement amplitudes. Formation of the finger grip occurred during hand transportation. Fingers were first stretched and then began to close in anticipation to contact with the object. The onset of the closure phase was highly correlated to the beginning of the low velocity phase of transportation. This pattern for both transportation and finger grip formation was maintained in conditions whether visual feedback from the moving limb was present or not. Implications of these findings for the central programming of multisegmental movements are discussed.  相似文献   

7.
This study examined the effect of anxiety states on the relationship between golf-putting distance and performance in an environment requiring high movement accuracy. Twenty-three amateur golfers attempted 15 putts at each of three putting distances, 1.25, 1.50, and 1.75 m, under conditions characterized by both control demands and pressure. All attempts were recorded, and kinematic features were analyzed. Under conditions involving an audience and a monetary reward, the mean score on the State-Trait Anxiety Inventory Y-1 and the mean heart rate increased by 14 points and 11 bpm, respectively. We grouped participants on an a posteriori basis using the median split. The backswing of high-anxiety performers shortened, the downswing speed declined, and the relative time to peak club-head velocity changed when putting under pressure from 1.25 m. In contrast, no change in backswing or relative time to peak velocity was observed in low-anxiety performers, although impact velocity increased under this condition. These results indicate that the degree to which both low- and high-anxiety golfers were anxious about failure affected motor control at the 1.25-m distance, suggesting that a distortion in perceived distance may result from the interaction between putting distance and anxiety related to failure during golf putting.  相似文献   

8.
The accuracy of perceptual judgment of the distance of a moving target tracked at various velocities by pursuit eye movements was examined in relation to the amount of two types of eye movement (smooth pursuit eye movement and compensatory saccade) involved in eye tracking. The perceptually judged distance became shorter as the amount of pursuit-eye-movement component in eye tracking increased. A detailed analysis of the eye-movement data and the size of perceptual underestimation indicated that the underestimation was mainly caused by inaccurate extraretinal information derived from the pursuit-eye-movement system, which underestimated the distance at a constant ratio, irrespective of the velocity of tracking. Egocentric localization was not affected by the mode of eye movements, indicating that the egocentric localization system functions without interference from the inaccurate information from the pursuit-eye-movement system.  相似文献   

9.
Three experiments are reported that test the hypothesis that under certain conditions programming time is a function of the directional accuracy demand of a response, directional accuracy being quantified by the minimal angle subtended at the point of movement initiation by the circular targets within the response. Subjects in three simple reaction time experiments were required to tap a single target or a series of circular targets as rapidly as possible with a hand-held stylus. Experiments 1 and 3 showed that the subtended angle (SA) of a response can have a more powerful effect on programming time, as indexed by reaction time and premotor time, than the number of movement parts in the response. The results of Experiment 2 revealed that the locus of the directional accuracy effect was SA and not target size or movement distance. In all three experiments, response SA was a better predictor of programming time than was number of movement parts, target size, movement distance, movement time, and average movement velocity. The findings support the notion that constraints placed upon movement initiation by the directional accuracy demand of the task can play an important role in determining the length of the programming process.  相似文献   

10.
Three experiments are reported that test the hypothesis that under certain conditions programming time is a function of the directional accuracy demand of a response, directional accuracy being quantified by the minimal angle subtended at the point of movement initiation by the circular targets within the response. Subjects in three simple reaction time experiments were required to tap a single target or a series of circular targets as rapidly as possible with a hand-held stylus. Experiments 1 and 3 showed that the subtended angle (SA) of a response can have a more powerful effect on programming time, as indexed by reaction time and premotor time, than the number of movement parts in the response. The results of Experiment 2 revealed that the locus of the directional accuracy effect was SA and not target size or movement distance. In all three experiments, response SA was a better predictor of programming time than was number of movement parts, target size, movement distance, movement time, and average movement velocity. The findings support the notion that constraints placed upon movement initiation by the directional accuracy demand of the task can play an important role in determining the length of the programming process.  相似文献   

11.
The goal of this study was to examine how the kinematics of reciprocal aiming movements were affected by both the objective of the movement and the constraints operating on that movement. In Experiment 1, the objective of the movement was indirectly manipulated by capitalizing on the fact that subjects determine their own accuracy and speed limits, despite uniform task instructions to move as quickly and accurately as possible. A Fitts' type reciprocal aiming paradigm was employed, in which 69 subjects were asked to move a stylus repetitively between two spatially separated targets. Four target widths were orthogonally combined with four movement amplitudes, resulting in 16 conditions. Movements were made on an X-Y digitizing tablet. Based on the mean variable error produced on both targets, subjects were differentiated post hoc into three movement objective groups: speed, accuracy, and speed-plus-accuracy. Kinematic analyses revealed that the programming and execution of movements were systematically influenced by both the movement objective and the movement constraints. That is, movement time, peak velocity, dwell time, acceleration and deceleration time, normalized acceleration and normalized deceleration varied systematically as a function of both the speed-accuracy movement objective and the movement constraints of target size and movement distance. Moreover, the consequences of changing the constraints of the movement were affected by an interaction with the objective of the movement. In Experiment 2, the objective of the movement was directly manipulated by varying speed and/or accuracy instructions to subjects. The basic results of Experiment 1 were substantiated. Overall, the results were consistent with the view that motor control is dependent upon sensory consequences.  相似文献   

12.
The goal of this study was to examine how the kinematics of reciprocal aiming movements were affected by both the objective of the movement and the constraints operating on that movement. In Experiment 1, the objective of the movement was indirectly manipulated by capitalizing on the fact that subjects determine their own accuracy and speed limits, despite uniform task instructions to move as quickly and accurately as possible. A Fitts' type reciprocal aiming paradigm was employed, in which 69 subjects were asked to move a stylus repetitively between two spatially separated targets. Four target widths were orthogonally combined with four movement amplitudes, resulting in 16 conditions. Movements were made on an X-Y digitizing tablet. Based on the mean variable error produced on both targets, subjects were differentiated post hoc into three movement objective groups: speed, accuracy, and speed-plus-accuracy. Kinematic analyses revealed that the programming and execution of movements were systematically influenced by both the movement objective and the movement constraints. That is, movement time, peak velocity, dwell time, acceleration and deceleration time, normalized acceleration and normalized deceleration varied systematically as a function of both the speed-accuracy movement objective and the movement constraints of target size and movement distance. Moreover, the consequences of changing the constraints of the movement were affected by an interaction with the objective of the movement. In Experiment 2, the objective of the movement was directly manipulated by varying speed and/or accuracy instructions to subjects. The basic results of Experiment 1 were substantiated. Overall, the results were consistent with the view that motor control is dependent upon sensory consequences.  相似文献   

13.
晏碧华  游旭群 《心理学报》2015,47(2):212-223
相对到达时间任务(RAT)是判断两个运动客体哪个先到达指定目标, 可用来评估个体动态空间能力。采用RAT任务对飞行员与普通被试进行对照研究, 寻求发现两组在运动客体特征和视觉空间运动特征及其相互关系上的处理差异。设计了3个实验分别考察客体颜色、客体大小、运动方向、速率大小、视线方向以及背景特征对判断的影响。结果显示:(1)客体颜色不影响运动客体的相对时间判断, 客体大小、运动方向、速率大小、视线方向以及背景特征影响判断; (2)控制组对显示屏上从左到右的运动客体的相对时间判断好于从右到左任务, 大速率任务判断更好, 对大客体快速行驶而小客体低速行驶时的相对到达时间更易区分, 且与两眼视线方向不一致的运动方向会使控制组判断更难, 运动背景中的目标线特征改变使控制组判断绩效降低; (3)和控制组比, 飞行员反应快正确率高, 其快速判断优势集中体现在从右到左运动以及小速率任务上, 且在不同运动方向和不同速率上的反应时均无差异, 飞行员的处理优势还表现在不受客体大小、视线方向改变和目标线特征改变的影响。结论:飞行员能在变化的空间中准确处理相对速度、相对距离、相对时间等运动信息, 能分离客体大小、背景、运动方向等因素对相对到达时间判断的影响, 在运动空间中飞行员具有较高场独立性认知特征和动态空间处理能力。  相似文献   

14.
The issues addressed in 2 experiments in which 10 younger and 10 older adults participated were (a) whether the retention of a target location in memory for motor control purposes would be facilitated by an increase in target presentation time; (b) whether increasing the recall delay since the last exposure to the target would have deleterious effects on aiming accuracy or variability, or both; and (c) whether those effects would be mediated by aging. The results revealed that there is a short-lived (< 1 s) visual representation of target location. In addition, the results suggested that the nature of that representation dictates a movement strategy favoring higher peak movement velocity. None of the effects reported in the present study was affected by age, suggesting that the coding and retrieving processes of target location in memory for motor control purposes are not affected by age.  相似文献   

15.
The issues addressed in 2 experiments in which 10 younger and 10 older adults participated were (a) whether the retention of a target location in memory for motor control purposes would be facilitated by an increase in target presentation time; (b) whether increasing the recall delay since the last exposure to the target would have deleterious effects on aiming accuracy or variability, or both; and (c) whether those effects would be mediated by aging. The results revealed that there is a short-lived (< 1 s) visual representation of target location. In addition, the results suggested that the nature of that representation dictates a movement strategy favoring higher peak movement velocity. None of the effects reported in the present study was affected by age, suggesting that the coding and retrieving processes of target location in memory for motor control purposes are not affected by age.  相似文献   

16.
Investigations of the differences in movement speed over the age span, childhood to early adulthood, have typically confounded age with size differences which bring about mechanical differences in the task. The present study investigated the effect on arm movement time of confounding age and limb length. Young adults and children 7 to 9 yr. of age were tested over a distance proportional to their arm length. Despite moving over a proportionally shorter distance, the children were significantly slower than the adults, suggesting that age differences in performance are not solely attributable to size differences among subjects.  相似文献   

17.
First year after the stroke is essential for motor recovery. The main motor control strategy (i.e., faster movement production at the expense of lower movement accuracy and stability, or greater movement accuracy and stability at the expense of slower movement) selected by poststroke patients during a unilateral speed–accuracy task (SAT) remains unclear. We aimed to investigate the poststroke (12 months after stroke) effects on the trade-off between movement speed and accuracy, and intraindividual variability during a motor performance task. Healthy right-handed men (n = 20; age ∼ 66 years) and right-handed men after ischemic stroke during their post rehabilitation period (n = 20; age ∼ 69 years) were asked to perform a simple reaction task, a maximal velocity performance task and a SAT with the right and left hand, and with the right and left leg. In the hand movement trial, reaction time and movement velocity (Vmax) in the SAT were slower and time to Vmax in the SAT was longer in the poststroke group (P < .01). In the leg movement trial, poststroke participants reached a greater Vmax in the SAT than the healthy participants (P < .01). The greatest poststroke effect on intraindividual variability in movements was found for movement path in the SAT, which was significantly greater in the legs than in the hands. Poststroke patients in the first year after stroke mainly selected an impulsive strategy for speed over hand and leg motor control, but at the expense of lower movement accuracy and greater variability in movement.  相似文献   

18.
In two experiments, patterns of response error during a timing accuracy task were investigated. In Experiment 1, these patterns were examined across a full range of movement velocities, which provided a test of the hypothesis that as movement velocity increases, constant error (CE) shifts from a negative to a positive response bias, with the zero CE point occurring at approximately 50% of maximum movement velocity (Hancock & Newell, 1985). Additionally, by examining variable error (VE), timing error variability patterns over a full range of movement velocities were established. Subjects (N = 6) performed a series of forearm flexion movements requiring 19 different movement velocities. Results corroborated previous observations that variability of timing error primarily decreased as movement velocity increased from 6 to 42% of maximum velocity. Additionally, CE data across the velocity spectrum did not support the proposed timing error function. In Experiment 2, the effect(s) of responding at 3 movement distances with 6 movement velocities on response timing error were investigated. VE was significantly lower for the 3 high-velocity movements than for the 3 low-velocity movements. Additionally, when MT was mathematically factored out, VE was less at the long movement distance than at the short distance. As in Experiment 1, CE was unaffected by distance or velocity effects and the predicted CE timing error function was not evident.  相似文献   

19.
Numerous studies of human motor control have examined the effects of constraints on the programming and execution of visually directed limb movements. Only a few studies, however, have explored how the subject's objective in making the movement affects the coordinated sequence of eye and limb movements that unfolds as the subject points to or grasps an object in space. In the present study, the characteristics of the targets and the environment remained constant while the demands for speed and accuracy were varied across blocks of trials by changing the instructions to the subject. In other words, the constraints operating in the situation were kept constant, but the objective of the movement was systematically varied by changing the relative demands for speed and accuracy. All subjects were required to point to visual targets presented on a screen in front of them. Eye position was monitored by infrared reflection. The position of each subject's hand in three-dimensional space was reconstructed by a computer-assisted analysis of the images provided by two rotary-shutter video cameras. The speed and accuracy demands of the task were varied in blocks of trials by requiring the subjects to point to the target "as quickly as you can" (speed condition); "as accurately as you can" (accuracy condition); or both "quickly and accurately" (speed/accuracy condition). The time to initiate an eye movement to the target was found to be reduced by increasing either the speed or accuracy demands of the task although the time to initiate the hand movement was reduced only in the speed condition. While the duration of the acceleration phase of the reach remained constant in real time, the duration of the deceleration phase was increased with increased demands for accuracy. As expected, both variable and absolute errors were largest in the speed condition. The findings indicated that the programming of the limb movement and its coordination with the associated eye movements were affected by varying the objective of the task.  相似文献   

20.
The authors investigated how tracking performance, submovement organization, pen pressure and muscle activity in forearm and shoulder muscles were affected by target size in a 2D tracking task performed with a pen on a digitizer tablet. Twenty-six subjects took part in an experiment, in which either a small dot or a large dot was tracked, while it moved quasirandomly across a computer screen at a constant velocity of 2 cm/s. The manipulation of precision level was successful, because mean distance to target and the standard deviation of this distance were significantly smaller with the small target than with the large target. With a small target, subjects trailed more behind the center of target and used submovements with larger amplitudes and of shorter duration, resulting in higher tracking accuracy. This change in submovement organization was accompanied by higher pen pressure, while at the same time muscle activity in the forearm extensors and flexors was increased, indicating higher endpoint stability. In conclusion, increased precision demands were accommodated by both a different organization of submovements and higher endpoint stability in a 2D tracking task performed with a pen on a digitizer tablet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号