首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
儿童空间再定向的几何模块论及其局限   总被引:3,自引:0,他引:3  
儿童的空间再定向指的是迷失方向的儿童在空间中重新确定自己方位并找回被藏物体的能力。儿童的这一能力与某些低等哺乳动物(如大鼠)相似,都只能利用空间环境所构成的几何信息,不能利用非几何信息来再定向。几何模块论认为造成这一现象的原因是儿童与低等哺乳动物的认知系统里存在几何模块。然而,众多研究对这种简单化的观点提出了异议。针对这些异议,几何模块论又进行了新的修订  相似文献   

2.
When disoriented in a closed rectangular tank, fish (Xenotoca eiseni) reoriented in accord with the large-scale shape of the environment, but they were also able to conjoin geometric information with nongeometric properties such as the color of a wall or the features provided by panels located at the corners of the tank. Fish encoded geometric information even when featural information sufficed to solve the spatial task. When tested after transformations that altered the original arrangement of the panels, fish were more affected by those transformations that modified the geometric relationship between the target and the shape of the environment. Finally, fish appeared unable to use nongeometric information provided by distant panels. These findings show that a reorientation mechanism based on geometry is widespread among vertebrates, though the joint use of geometric and nongeometric cues by fish suggest that the degree of information encapsulation of the mechanism varies considerably between species.  相似文献   

3.
Prior experiments have shown that young children, like adult rats, rely mainly on information about the macroscopic shape of the environment to reorient themselves, whereas human adults rely more flexibly on combinations of spatial and non-spatial landmark information. Adult rats have also been shown to exhibit a striking limitation in another spatial memory task, movable object search, again a limitation not shown by human adults. The present experiments explored the developmental change in humans leading to more flexible, human adult-like performance on these two tasks. Experiment 1 identified the age range of 5-7 years as the time the developmental change for reorientation occurs. Experiment 2 employed a multiple regression approach to determine that among several candidate measures, only a specific language production measure, the production of phrases specifying exactly the information needed to solve the task like adults, correlated with the reorientation performance of children in this age range. Experiment 3 revealed that similar language production abilities were associated with more flexible moving object search task performance. These results, in combination with findings with human adults, suggest that language production skills play a causal role in allowing older humans to construct novel representations rapidly, which can then be used to transcend the limits of phylogenetically older cognitive processes.  相似文献   

4.
Rhesus monkeys (Macaca mulata) were subjected to a place finding task in a rectangular room perfectly homogeneous and without distinctive featural information. Results of Experiment 1 show that monkeys rely on the large-scale geometry of the room to retrieve a food reward. Experiments 2 and 3 indicate that subjects use also nongeometric information (colored wall) to reorient. Data of Experiments 4 and 5 suggest that monkeys do not use small angular cues but that they are sensitive to the size of the cues (Experiments 6, 7, and 8). Our findings strengthen the idea that a mechanism based on the geometry of the environment is at work in several mammalian species. In addition, the present data offer new perspectives on spatial cognition in animals that are phylogenetically close to humans. Specifically, the joint use of both geometric and landmark-based cues by rhesus monkeys tends to demonstrate that spatial processing became more flexible with evolution.  相似文献   

5.
Recent work has shown that in place-finding tasks rats rely on the geometric relations between the goal object and the shape of the environment. We tested young chickens (Gallus gallus domesticus) on similar tasks in a reference memory paradigm to determine whether differences exist between species in the ability to use geometric and nongeometric spatial information. The main findings were that chicks: (a) encoded and used both geometric and nongeometric (featural) information; (b) did not use the overall spatial arrangement of the features; (c) relied primarily on nongeometric cues when faced with contradictory information. Two mechanisms are evident in chicks' spatial representations: a metric frame for encoding the spatial arrangement of surfaces as surfaces and a cue-guidance system for encoding conspicuous landmarks near the target. The possibility of hierarchical organization and species differences in these two mechanisms are discussed.  相似文献   

6.
It has been found that disoriented children could use geometric information in combination with landmark information to reorient themselves in large but not in small experimental spaces. We tested domestic chicks in the same task and found that they were able to conjoin geometric and nongeometric (landmark) information to reorient themselves in both the large and the small space used. Moreover, chicks reoriented immediately when displaced from a large to a small experimental space and vice versa, suggesting that they used the relative metrics of the environment. However, when tested with a transformation (affine transformation) that alters the geometric relations between the target and the shape of the environment, chicks tended to make more errors based on geometric information when tested in the small than in the large space. These findings suggest that the reliance of the use of geometric information on the spatial scale of the environment is not restricted to the human species.  相似文献   

7.
Being able to reorient to the spatial environment after disorientation is a basic adaptive challenge. There is clear evidence that reorientation uses geometric information about the shape of the surrounding space. However, there has been controversy concerning whether use of geometry is a modular function, and whether use of features is dependent on human language. A key argument for the role of language comes from shadowing findings where adults engaged in a linguistic task during reorientation ignored a colored wall feature and only used geometric information to reorient [Hermer-Vazquez, L., Spelke, E., & Katsnelson, A. (1999). Sources of flexibility in human cognition: Dual task studies of space and language. Cognitive Psychology, 39, 3-36]. We report three studies showing: (a) that the results of Hermer-Vazques et al. [Hermer-Vazquez, L., Spelke, E., & Katsnelson, A. (1999). Sources of flexibility in human cognition: Dual task studies of space and language. Cognitive Psychology, 39, 3-36] are obtained in incidental learning but not with explicit instructions, (b) that a spatial task impedes use of features at least as much as a verbal shadowing task, and (c) that neither secondary task impedes use of features in a room larger than that used by Hermer-Vazquez et al. These results suggest that language is not necessary for successful use of features in reorientation. In fact, whether or not there is an encapsulated geometric module is currently unsettled. The current findings support an alternative to modularity; the adaptive combination view hypothesizes that geometric and featural information are utilized in varying degrees, dependent upon the certainty and variance with which the two kinds of information are encoded, along with their salience and perceived usefulness.  相似文献   

8.
Several vertebrate species, including humans, following passive spatial disorientation appear to be able to reorient themselves by making use of the geometric shape of the environment (i.e., metric properties of surfaces and directional sense). In some circumstances, reliance on such purely geometric information can overcome the use of local featural cues (landmarks). The relative use of geometric and non-geometric information seems to depend upon, among other factors, the size of the experimental space. Evidence in non-human animals and in human infants for primacy in encoding either geometric or landmark information depending on the size of the environment is reviewed, together with possible theoretical accounts of this phenomenon.  相似文献   

9.
《Cognitive development》2001,16(3):853-869
Geometric features of surfaces and local information are constitutive elements of spatial representations. A number of studies in animals (rats) and human children (24 months old) have shown that in a rectangular environment with a reward hidden in one of the corners, geometric properties predominate over local cues for search strategies. In contrast, monkeys and human adults are able to take into account both types of information (geometric and local) to reorient. So far, all of the experiments have been conducted in the locomotor space involving a navigational task. In the present study, we examined whether similar search patterns are found using a tabletop model of a rectangular room. Three groups of children (3-, 4-, and 5-year-olds) and one group of adults were tested. Results show that geometric encoding appears only at 4 years of age, that is later than in the locomotor space. The joint use of geometry and local cues emerges at 5 years of age. These data show that similar types of processing are implemented in both manipulatory and locomotor space but not at the same time. The difference between locomotor and manipulatory tasks suggests that being immersed in the environment makes this separated processing easier than being confronted by a task for which the object is exterior to the participant.  相似文献   

10.
11.
The age-related decline in working memory (WM) has been studied extensively. Yet, research has focused mainly on one aspect of memory, in which older adults memorised information provided to them, neglecting the frequent everyday behaviour in which memory is self-initiated (SI), meaning that individuals memorise information they selected themselves. The present study used a modified spatial span task in which young and older adults memorised spatial sequences they constructed themselves, or random sequences provided to them. The results revealed that young and older adults carefully planned and constructed structured spatial sequences, by minimising distances between successive locations, and by selecting sequences with fewer path crossings and with more linear shapes. Older adults constructed sequences that were even more structured in some aspects. Young and older adults benefited from self-initiation to the same extent, showing similar age-related declines in SI and provided spatial WM. Overall, the study shows that older adults have access to metacognitive knowledge on the structure of efficient WM representations that benefit accuracy, and shows that older adults can use strategic encoding processes efficiently when encoding is SI. More generally, SI WM explores an important aspect of behaviour, demonstrating how older adults shape their environment to facilitate cognitive functioning.  相似文献   

12.
Age-related impairments during spatial navigation have been widely reported in egocentric and allocentric paradigms. However, the effect of age on more specific navigational components such as the ability to drive or update directional information has not received enough attention. In this study we investigated the effect of age on spatial updating of a visual target after a series of whole–body rotations and transitions using a novel landmark-less virtual reality (VR) environment. Moreover, a significant number of previous studies focused on measures susceptible to a general decline in motor skills such as the spent time navigating, the distance traversed. The current paper proposes a new compound spatial measure to assess navigational performance, examines its reliability and compares its power with those of the measures of duration and traversed distance in predicting participants' age and cognitive groups assessed by Montreal Cognitive Assessment (MoCA) scores. Using data from 319 adults (20–83 years), our results confirm the reliability, the age sensitivity, and the cognitive validity of the designed spatial measure as well as its superiority to the measures of duration and traversed distance in predicting age and MoCA score. In addition, the results show the significant effect of age cognitive status on spatial updating.  相似文献   

13.
Spatial scaling is an integral aspect of many spatial tasks that involve symbol-to-referent correspondences (e.g., map reading, drawing). In this study, we asked 3–6-year-olds and adults to locate objects in a two-dimensional spatial layout using information from a second spatial representation (map). We examined how scaling factor and reference features, such as the shape of the layout or the presence of landmarks, affect performance. Results showed that spatial scaling on this simple task undergoes considerable development, especially between 3 and 5 years of age. Furthermore, the youngest children showed large individual variability and profited from landmark information. Accuracy differed between scaled and un-scaled items, but not between items using different scaling factors (1:2 vs. 1:4), suggesting that participants encoded relative rather than absolute distances.  相似文献   

14.
Spatial terms that encode support (e.g., “on”, in English) are among the first to be understood by children across languages (e.g., Bloom, 1973; Johnston & Slobin, 1979). Such terms apply to a wide variety of support configurations, including Support-From-Below (SFB; cup on table) and Mechanical Support, such as stamps on envelopes, coats on hooks, etc. Research has yet to delineate infants’ semantic space for the term “on” when considering its full range of usage. Do infants initially map “on” to a very broad, highly abstract category – one including cups on tables, stamps on envelopes, etc.? Or do infants begin with a much more restricted interpretation - mapping “on” to certain configurations over others? Much infant cognition research suggests that SFB is an event category that infants learn about early - by five months of age (Baillargeon & DeJong, 2017) - raising the possibility that they may also begin by interpreting the word “on” as referring to configurations like cups on tables, rather than stamps on envelopes. Further, studies examining language production suggests that children and adults map the basic locative expression (BE on, in English) to SFB over Mechanical Support (Landau et al., 2016). We tested the hypothesis that this ‘privileging’ of SFB in early infant cognition and child and adult language also characterizes infants’ language comprehension. Using the Intermodal-Preferential-Looking-Paradigm in combination with infant eye-tracking, 20-month-olds were presented with two support configurations: SFB and Mechanical, Support-Via-Adhesion (henceforth, SVA). Infants preferentially mapped “is on” to SFB (rather than SVA) suggesting that infants differentiate between two quite different kinds of support configurations when mapping spatial language to these two configurations and more so, that SFB is privileged in early language understanding of the English spatial term “on”.  相似文献   

15.
Proponents of a geometric module have argued that instances of young children's use of features as well as geometry to reorient can be explained by a two-stage process. In this model, only the first stage is a true reorientation, accomplished by using geometric information alone; features are considered in a second stage using association ( Lee, Shusterman & Spelke, 2006 ). This account is contradicted by the data from two experiments. Experiment 1a sets the stage for Experiment 1b by showing that young children use geometric information to reorient in a complex geometric figure without a single principal axis of symmetry (an octagon). In such a figure, there are two sets of geometrically congruent corners, with four corners in each set. The addition of a colored wall leads to the existence of three geometrically congruent but, crucially, all unmarked corners; using the colored wall to distinguish among them could not be done associatively. In Experiment 1b, both 3- and 5-year-old children showed true non-associative reorientation using features by performing at above-chance levels on all-white trials. Experiment 2 used a paradigm without distinctive geometry, modeled on Lee et al. (2006) , involving an equilateral triangle of hiding places located within a circular enclosure, but with a large stable feature rather than a small moveable one. Four-year-olds (the age group studied by Lee et al.) used features at above-chance levels. Thus, features can be used to reorient, in a way not dependent on association, in contradiction to the two-stage version of the modular view.  相似文献   

16.
Disoriented children could use geometric information in combination with landmark information to reorient themselves in large but not in small experimental spaces. We tested fish in the same task and found that they were able to conjoin geometric and non-geometric (landmark) information to reorient themselves in both the large and the small space used. Moreover, fish proved able to reorient immediately when dislocated from a large to a small experimental space and vice versa, suggesting that they encoded the relative rather than the absolute metrics of the environment. However, fish tended to make relatively more errors based on geometric information when transfer occurred from a small to a large space, and to make relatively more errors based on landmark information when transfer occurred from a large to a small space. The hypothesis is discussed that organisms are prepared to use only distant featural information as landmarks.  相似文献   

17.
It has been suggested that young children can only reorient, locating a target object, when the geometry of an enclosed space provides distinctive shape information [e.g., Hermer, L., & Spelke, E. (1994). A geometric process for spatial reorientation in young children. Nature, 370, 57-59]. Recently, however, young children were shown to specify location in a square-shaped space, where geometry is uninformative, so long as scale-like information was available on the walls of the space [Huttenlocher, J., & Lourenco, S. F. (2007a). Coding location in enclosed spaces: Is geometry the principle? Developmental Science, 10, 741-746]. Here we build on this work by examining more closely what types of cues afford 18- to 24-month-olds an advantage in locating a target object following disorientation. Their performance was assessed when linear scale-like information was presented either in isolation or in composite form. It was found that, even in isolation, young children searched at the appropriate locations, with added benefit when presented as a composite. We suggest that linear scale-like dimensions, especially when available in composite form, play a critical role in supporting location representation in young children.  相似文献   

18.
19.
Research with both rats and human infants has found that after inertial disorientation, the geometry of an enclosed environment is used in preference over distinctive featural information during goal localization. Infants (Homo sapiens, 18-24 months) were presented with a toy search task involving inertial disorientation in 1 of 2 conditions. In the identical condition, 4 identical hiding boxes in a rectangular formation were set within a circular enclosure. In the distinctive condition, 4 distinctive hiding boxes were used. Infants searched the goal box and its rotational equivalent significantly more than would be expected by chance in the identical condition, showing that they were sensitive to the geometric configuration of the array of boxes. Unlike the results of studies using a rectangular enclosure, however, in the distinctive condition, infants searched at the correct location significantly more than at other locations.  相似文献   

20.
Growing in circles: rearing environment alters spatial navigation in fish   总被引:1,自引:0,他引:1  
ABSTRACT— Animals of many species use the geometric shape of an enclosed rectangular environment to reorient, even in the presence of a more informative featural cue. Manipulating the rearing environment affects performance on spatial tasks, but its effect on the use of geometric versus featural navigational cues is unknown. Our study varied the geometric information available in the rearing environment (circular vs. rectangular rearing tanks) of convict cichlids ( Archocentrus nigrofasciatus ) and tested their use of navigational cues. All the fish used geometric information to navigate when no features were present. When features were present, the fish used geometric and featural information separately. If cues were in conflict, fish raised in a circular tank showed significantly less use of geometric information than fish raised in a rectangular tank. Thus, the ability to use geometry to navigate does not require exposure to angular geometric cues during rearing, though rearing environment affects the dominance of featural and geometric cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号