首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A large number of studies have indicated that stress exposure or the administration of stress hormones and other neuroactive drugs immediately after a learning experience modulates the consolidation of long-term memory. However, there has been little investigation into how arousal induced by handling of the animals in order to administer these drugs affects memory. Therefore, the present study examined whether the posttraining injection or handling procedure per se affects memory of auditory-cue classical fear conditioning. Male Sprague-Dawley rats, which had been pre-handled on three days for 1 min each prior to conditioning, received three pairings of a single-frequency auditory stimulus and footshock, followed immediately by either a subcutaneous injection of a vehicle solution or brief handling without injection. A control group was placed back into their home cages without receiving any posttraining treatment. Retention was tested 24 h later in a novel chamber and suppression of ongoing motor behavior during a 10-s presentation of the auditory-cue served as the measure of conditioned fear. Animals that received posttraining injection or handling did not differ from each other but showed significantly less stimulus-induced movement compared to the non-handled control group. These findings thus indicate that the posttraining injection or handling procedure is sufficiently arousing or stressful to facilitate memory consolidation of auditory-cue classical fear conditioning.  相似文献   

2.
Corticosteroid effects on cognitive abilities during behavioral adaptation to stress are mediated by two types of receptors. While the glucocorticoid receptor (GR) is mainly involved in the consolidation of memory, the mineralocorticoid receptor (MR) mediates appraisal and initial responses to novelty. Recent findings in humans and mice suggest that under stress, the MR might be involved in the use of different learning strategies. Here, we used male mice lacking the MR in the forebrain (MR(CaMKCre)), which were subjected to 5-10 min acute restraint stress, followed 30 min later by training trials on the circular hole board. Mice had to locate an exit hole using extra- and intra-maze cues. We assessed performance and the use of spatial and stimulus-response strategies. Non-stressed MR(CaMKCre) mice showed delayed learning as compared to control littermates. Prior stress impaired performance in controls, but did not further deteriorate learning in MR(CaMKCre) mice. When stressed, 20-30% of both MR(CaMKCre) and control mice switched from a spatial to a stimulus-response strategy, which rescued performance in MR(CaMKCre) mice. Furthermore, MR(CaMKCre) mice showed increased GR mRNA expression in all CA areas of the hippocampus and an altered basal and stress-induced corticosterone secretion, which supports their role in the modulation of neuroendocrine activity. In conclusion, our data provide evidence for the critical role of MR in the fast formation of spatial memory. In the absence of forebrain MR spatial learning performance was under basal circumstances impaired, while after stress further deterioration of performance was rescued by switching behavior increasingly to a stimulus-response strategy.  相似文献   

3.
Handled (Day 1-22) and non-handled infantile Wistar rats were tested in maturity for the partial reinforcement extinction effect (PREE) and the partial punishment effect (PPE). In Experiments 1 and 2, mature male and female rats were trained to run in an alley for food reward on a 1-trial/day schedule. In the PREE paradigm (Experiment 1), the partially reinforced group (PRF) received reinforcement on a quasi-random 50% schedule, while the continuously reinforced group (CRF) received reinforcement on every trial. In the test stage, both groups were given extinction training. In the PPE paradigm (Experiment 2), the partially punished (PP) group received, together with continuous reinforcement, shocks on a quasirandom 50% schedule, while the continuously reinforced group was reinforced on every trial. In test, all animals were given both reinforcement and shock on every trial. In Experiment 1, PREE—i.e. increased resistance to extinction in the PRF as compared to the CRF group—was more pronounced in the handled animals. More specifically, no PREE was obtained in the non-handled males, and in the non-handled females the PREE was reduced compared to the handled females. The results of Experiment 2 revealed no effect of handling or sex on PPE, that is, increased resistance to punishment in the PP group as compared to the CRF group was evident in all four conditions. In Experiment 3, handled and non-handled male rats were tested for the PREE using a multi-trial procedure in an operant chamber. PREE was obtained in the handled but not in the non-handled animals. The implications of these results for the differential effects of handling on male and female rats and the distinction between the PREE and PPE paradigms are discussed.  相似文献   

4.
A quantitative computational theory of the operation of the CA3 system as an attractor or autoassociation network is described. Based on the proposal that CA3-CA3 autoassociative networks are important for episodic or event memory in which space is a component (place in rodents and spatial view in primates), it has been shown behaviorally that the CA3 supports spatial rapid one-trial learning and learning of arbitrary associations and pattern completion where space is a component. Consistent with the theory, single neurons in the primate CA3 respond to combinations of spatial view and object, and spatial view and reward. Furthermore, single CA3 neurons reflect the recall of a place from an object in a one-trial object-place event memory task. CA3 neurons also reflect in their firing a memory of spatial view that is retained and updated by idiothetic information to implement path integration when the spatial view is obscured. Based on the computational proposal that the dentate gyrus produces sparse representations by competitive learning and via the mossy fiber pathway forces new representations on the CA3 during learning (encoding), it has been shown behaviorally that the dentate gyrus supports spatial pattern separation during learning, and that the mossy fiber system to CA3 connections are involved in learning but not in recall. The perforant path input to CA3 is quantitatively appropriate to provide the cue for recall in CA3. The concept that the CA1 recodes information from CA3 and sets up associatively learned back-projections to neocortex to allow subsequent retrieval of information to neocortex provides a quantitative account of the large number of hippocampo-neocortical back-projections.  相似文献   

5.
Lewis and Fischer-344 rats have been proposed as an addiction model because of their differences in addiction behaviour. It has been suggested that drug addiction is related to learning and memory processes and depends on individual genetic background. We have evaluated learning performance using the eight-arm radial maze (RAM) in Lewis and Fischer-344 adult rats undergoing a chronic treatment with cocaine. In order to study whether morphological alterations were involved in the possible changes in learning after chronic cocaine treatment, we counted the spine density in hippocampal CA1 neurons from animals after the RAM protocol. Our results showed that Fischer-344 rats significantly took more time to carry out test acquisition and made a greater number of errors than Lewis animals. Nevertheless, cocaine treatment did not induce changes in learning and memory processes in both strains of rats. These facts indicate that there are genetic differences in spatial learning and memory that are not modified by the chronic treatment with cocaine. Moreover, hippocampal spine density is cocaine-modulated in both strains of rats. In conclusion, cocaine induces similar changes in hippocampal neurons morphology that are not related to genetic differences in spatial learning in the RAM protocol used here.  相似文献   

6.
Chronic stress has detrimental effects on hippocampal integrity, while environmental enrichment (EE) has beneficial effects when initiated early in development. In this study, we investigated whether EE initiated in adulthood would mitigate chronic stress effects on cognitive function and hippocampal neuronal architecture, when EE started one week before chronic stress began, or two weeks after chronic stress onset. Adult male Sprague Dawley rats were chronically restrained (6h/d) or assigned as non-stressed controls and subdivided into EE or non-EE housing. After restraint ended, rats were tested on a radial arm water maze (RAWM) for 2-d to assess spatial learning and memory. The first study showed that when EE began prior to 3-weeks of chronic stress, EE attenuated chronic stress-induced impairments in acquisition, which corresponded with the prevention of chronic stress-induced reductions in CA3 apical dendritic length. A second study showed that when EE began 2-weeks after the onset of a 5-week stress regimen, EE blocked chronic stress-induced impairments in acquisition and retention at 1-h and 24-h delays. RAWM performance corresponded with CA3 apical dendritic complexity. Moreover, rats in EE housing (control or stress) exhibited similar corticosterone profiles across weeks, which differed from the muted corticosterone response to restraint by the chronically stressed pair-housed rats. These data support the interpretation that chronic stress and EE may act on similar mechanisms within the hippocampus, and that manipulation of these factors may yield new directions for optimizing brain integrity and resilience under chronic stress or stress related neuropsychological disorders in the adult.  相似文献   

7.
Fos protein immunodetection was used to investigate the neuronal activation elicited in some olfactory-related areas after either learning of an olfactory discrimination task or its reactivation 10 d later. Trained rats (T) progressively acquired the association between one odor of a pair and water-reward in a four-arm maze. Two groups of pseudotrained rats were used: PO rats were not water restricted and were submitted to the olfactory stimuli in the maze without any reinforcement, whereas PW rats were water-deprived and systematically received water in the maze without any odorous stimulation. When the discrimination task was well mastered, a significantly lower Fos immunoreactivity was observed in T rats compared to PW and PO rats in most of the analyzed brain areas, which could reflect the post-acquisition consolidation process. Following memory reactivation, differences in Fos immunoreactivity between trained and some pseudotrained rats were found in the anterior part of piriform cortex, CA3, and orbitofrontal cortex. We also observed that Fos labeling was significantly higher in trained rats after memory reactivation than after acquisition of the olfactory task in most of the brain areas examined. Our results support the assumption of a differential involvement of neuronal networks after either learning or reactivation of an olfactory discrimination task.  相似文献   

8.
The immediate-early gene hzf-3, also known as nurr1, is a member of the inducible orphan nuclear receptor family and is one candidate in the search for genes associated with learning and memory processes. Here we report that acquisition of a spatial food search task is accompanied by elevated levels of hzf-3 mRNA in the hippocampus. Adult male Long-Evans rats were handled, food-restricted, and allowed to habituate to the maze prior to training. During acquisition, rats were given one training session per day for 5 days. Each training session consisted of five trials in which animals searched the maze for food located in 4 of 16 holes in the floor of the maze. Training resulted in spatial acquisition of the task. Northern blot analysis showed significant increases in hippocampal hzf-3 mRNA 3 h after training in the maze. Next, brains were obtained from Naive, Habituated, Day 1, Day 3, and Day 5 animals and processed for in situ hybridization. The results showed significant increases of hzf-3 mRNA in CA1 and CA3 subregions of the dorsal hippocampus during acquisition of the task. We conclude that expression of the hzf-3 gene in the brain is associated with long-term spatial memory processes. The present results are the first to implicate an orphan nuclear receptor in long-term information storage in the hippocampus.  相似文献   

9.
Infant rats that were either removed from the nest each day (handled) or left undisturbed (nonhandled) were, in adulthood, given 72 food-reinforced runway acquisition trials followed by 24 trials of extinction training with or without shock. Handled and nonhandled control animals were given runway training without food reinforcement. Reinforced rats ran faster than nonreinforced rats, and handled rats ran faster than nonhandled rats during the initial trials of runway acquisition irrespective of the reinforcement condition. Nonhadled rats stopped running sooner than handled rats when shock was introduced in the goalbox, but differences between handled and nonhandled rats given extinction training without shock were small. Results of a second experiment showed no differences between handled and non-handled rats in the magnitude of the depression effect after an incentive shift. It was concluded that infantile handling had little effect on frustration-motivated behavior, but did affect fear-motivated behavior.  相似文献   

10.
We studied the role of free radicals on brain oxidative damage in rats after acute immobilization stress (restraint) and mild emotional stress (handling). To investigate brain oxidative damage, CuZn and Mn dependent superoxide dismutase (CuZn SOD, Mn SOD) activities, lipid peroxidation (TBARs), Na + K + ATPase activity, protein carbonyl (PrC), and reduced and oxidized glutathione (GSH, GSSG) levels were measured in the cerebral cortex (CTX), hippocampus (HIP), and striatum (ST) of the animals after the two different stress stimuli. Because stress produces abnormalities in the hypothalamic-pituitary-adrenal axis, the intensity of the two stress conditions were measured by plasmatic corticosteroid (COR) levels: particularly, COR levels doubled in handled rats and increased 15-fold in restrained animals. The SOD activities increased in CTX and decreased in HIP of the handled rats, while in ST a significant decrease in handled animals but an increase in restrained animals occurred. TBARs, GSH, and GSSG levels remained unchanged, while an index of glutathione redox decreased significantly in ST of handled animals and in CTX of restrained ones. Na + K + ATPase activity increased significantly in the HIP and ST of both groups of stressed rats. The stress induced a remarkable increase in PrC levels in all studied cerebral areas. These findings provide evidence to support the idea that stress produces oxidants but that the oxidative damage in stress differs in cerebral areas and could contribute to the degenerative mechanism of aging.  相似文献   

11.
Although high levels of anxiety might be expected to negatively influence learning and memory, it remains to be shown whether individual differences in anxiety may influence spatial learning and memory in outbred rat populations. We have studied this possibility in male Wistar rats whose levels of anxiety were first characterized as either high (HA) or low (LA) according to their behavior in the elevated plus maze or in the open field test. Subsequently, their performance in the Morris water maze was studied, a task dependent on hippocampal activity. Interestingly, LA rats showed a faster acquisition and better memory in the water maze when compared to HA rats. Indeed, this difference in performance could mainly be attributed to the increase in thigmotactic behavior (swimming in circles close to the maze walls) displayed by HA rats during spatial navigation. Glucocorticoids are known to affect the state of anxiety and the hippocampus is the main target of glucocorticoids in the brain. Hence, we investigated whether the hippocampal expression of the two classical corticosteroid receptors, mineralocorticoid (MR) and glucocorticoid (GR) differed in the two groups of rats. We found that LA rats displayed higher hippocampal expression of MR but not GR than HA rats. Indeed, the expression levels for these receptors were positively correlated with the amount of time spent by the animals in the open arms of the elevated plus maze. Moreover, we present evidence that the levels of anxiety quantified in the first stages of our study constitute a trait rather than a state. Taken together, this study has generated evidence of a close interaction between the anxiety trait, hippocampal MR expression and the learning abilities of individuals in stressful spatial orientation tasks.  相似文献   

12.
Exposure to acute stress alters cognition; however, few studies have examined the effects of acute stress on executive functions such as behavioral flexibility. The goal of the present experiments was to determine the effects of acute periods of stress on two distinct forms of behavioral flexibility: set-shifting and reversal learning. Male Sprague-Dawley rats were trained and tested in an operant-chamber-based task. Some of the rats were exposed to acute restraint stress (30 min) immediately before either the set-shifting test day or the reversal learning test day. Acute stress had no effect on set-shifting, but it significantly facilitated reversal learning, as assessed by both trials to criterion and total errors. In a second experiment, the roles of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the acute-stress-induced facilitation of reversal learning were examined. Systemic administration of the GR-selective antagonist RU38486 (10 mg/kg) or the MR-selective antagonist spironolactone (50 mg/kg) 30 min prior to acute stress failed to block the facilitation on reversal learning. The present results demonstrate a dissociable effect of acute stress on set-shifting and reversal learning and suggest that the facilitation of reversal learning by acute stress may be mediated by factors other than corticosterone.  相似文献   

13.
Nociceptin/orphanin FQ (N/OFQ) peptide and its receptor are not only ubiquitously expressed in mammalian brain and spinal cord but are also abundant in limbic structures, particularly in the hippocampus. The widespread distribution of N/OFQ reflects the broad spectrum of its biological actions such as nociception, food intake, spontaneous locomotor activity, and learning and memory processes. Since the hippocampus is involved in the control of adrenocortical activity, its role in stress-related phenomena is well characterized. In male Wistar rats, we first examined the effects of acute restraint stress (120?min) on the brain immunohistochemical localization of N/OFQ. The analysis carried out on sections obtained at the onset of stress revealed enhanced expression of N/OFQ in CA1, CA3, and the dentate gyrus as well as increased plasma corticosterone concentrations. Next, we examined whether endogenous glucocorticoid hormone plays a role in the modulation of hippocampal N/OFQ expression in response to stress. To this end, rats were injected with corticosterone (1?mg/kg) or subjected to restraint stress 1 week after adrenalectomy. Two hours after corticosterone administration, plasma glucocorticoid concentrations were comparable to those observed after restraint stress, while N/OFQ expression had significantly increased in all the hippocampal subfields examined. By contrast, in adrenalectomized rats, stress did not modify protein expression. These results confirm that stress can affect N/OFQ expression and that glucocorticoids may constitute hormonal mediators of this complex interplay.  相似文献   

14.
Neonatal handling is known to induce long-lasting changes in behavioral and neuroendocrine responses to stress. Since the central noradrenergic system participates in the adaptive responses to stressful conditions we have analyzed the effects of postnatal handling on beta-adrenoceptor binding sites and isoprenaline- and forskolin-stimulated cyclic AMP accumulation in cerebral cortex, hippocampus and cerebellum of rats at 1 and 3 months of age. Handled animals showed reduced emotional reactivity and lower ACTH and corticosterone secretion after stress. Binding studies using [(3) H]CGP12-177 revealed increased beta-adrenoceptor binding sites in handled rats in cerebellum and cerebral cortex with no changes in hippocampus, and decreased affinity in all cerebral regions. Handling reduced basal levels of cyclic AMP in hippocampus and cerebellum but not in cerebral cortex. The concentration-response curves of cyclic AMP to isoprenaline were displaced to the right in cerebellum of handled rats without differences in Emax; however, Emax was significantly reduced in cerebral cortex and hippocampus. Direct stimulation of the catalytic subunit of adenylyl cyclase by forskolin reduced the efficiency in hippocampus and cerebellum, but not in cerebral cortex of handled animals. It is concluded that neonatal handling reduces the binding properties of beta-adrenoceptor and its primary biochemical responses in the young rat brain, which may account for the reduced responsiveness to stress attained in the handled rats, and may explain the persistence of the effect. The present study emphasizes the role of the central noradrenergic system in modulating the behavioral and neurendocrine responses to neonatal handling.  相似文献   

15.
Learning when reward is delayed: a marking hypothesis   总被引:4,自引:0,他引:4  
Rats were trained on spatial discriminations in which reward was delayed for 1 min. Experiment 1 tested Lett's hypothesis that responses made in the home cage during the delay interval are less likely to interfere with learning than responses made in the maze. Experimental subjects were transferred to their home cages during the delay interval, and control subjects were picked up but then immediately replaced in the maze. Contrary to Lett's hypothesis, both groups learned. Further experiments suggested that handling following a choice response was the crucial variable in producing learning: No learning occurred when handling was delayed (Experiment 2) or omitted (Experiment 3). One possible explanation for the fact that handling facilitated learning is that it served to mark the preceding choice response in memory so that subjects were then more likely to recall it when subsequently reinforced. In accordance with this interpretation, learning was found to be just as strong when the choice response was followed by an intense light or noise as by handling (Experiment 4). The implication of marking for other phenomena such as avoidance, quasi-reinforcement, and the paradoxical effects of punishment is also discussed.  相似文献   

16.
Prenatal stress can cause long-term effects on cognitive functions in offspring. Hippocampal synaptic plasticity, believed to be the mechanism underlying certain types of learning and memory, and known to be sensitive to behavioral stress, can be changed by prenatal stress. Whether enriched environment treatment (EE) in early postnatal periods can cause a recovery from these deficits is unknown. Experimental animals were Wistar rats. Prenatal stress was evoked by 10 foot shocks (0.8 mA for 1s, 2-3 min apart) in 30 min per day at gestational day 13-19. After weaning at postnatal day 22, experimental offspring were given the enriched environment treatment through all experiments until tested (older than 52 days age). Electrophysiological and Morris water maze testing was performed at 8 weeks of age. The results showed that prenatal stress impaired long-term potentiation (LTP) but facilitated long-term depression (LTD) in the hippocampal CA1 region in the slices. Furthermore, prenatal stress exacerbated the effects of acute stress on hippocampal LTP and LTD, and also impaired spatial learning and memory in the Morris water maze. However, all these deficits induced by prenatal stress were recovered by enriched environment treatment. This work observes a phenomenon that may contribute to the understanding of clinically important interactions among cognitive deficit, prenatal stress and enriched environment treatment. Enriched environment treatment on early postnatal periods may be one potentially important target for therapeutic interventions in preventing the prenatal stress-induced cognitive disorders.  相似文献   

17.
18.
Recent studies in rodent models and in humans have shown that the status of both the gonadal and adrenal axes (hypothalamic-pituitary-gonadal, HPG and hypothalamic-pituitary-adrenal, HPA, respectively) can influence learning and memory function. In this article, the effects of activating the HPA axis (stress) on performance of memory tasks in rats are reviewed. More importantly, results are presented which show that chronic stress has a different impact on performance of these tasks depending upon the sex of the rat. These observations are novel and potentially important since few studies, animal or human, have utilized females as subjects in studies of the stress response. Sex differences in the effects of chronic stress on memory were investigated in rats using an object recognition task and two spatial memory tasks, radial arm maze and object location. Given the same chronic stress--21 days of restraint for 6 h each day--males were impaired in all of the memory tests while females showed enhanced performance of the spatial memory tasks and no changes in object recognition performance. Levels of neurotransmitters and metabolites were measured in brain areas important for cognition in the subjects in order to determine neural systems that may respond to stress and mediate the cognitive responses. These results show that responses of monoamine and amino acid containing neural systems may contribute to or underlie sex differences in stress effects on cognition. Stress decreased dopaminergic activity in the frontal cortex and amygdala of males but not females; whereas, in CA3 of the hippocampus, stress increased levels of 5-HT and norepinephrine in females, but not males, and increased GABA in males, but not females. Finally, a possible role for estradiol in mediating sexually differentiated responses to stress was examined. Behavioral and neurochemical evaluations in ovariectomized, stressed females, with or without estrogen replacement, suggest that sex differences in response to stress are influenced by both the organizing and activating effects of estradiol. A few, recent studies in humans, that show sexually dimorphic relationships between chronic stress and cognition, are also highlighted. These results in humans are consistent with the pattern of results in rats. Clearly, further studies are necessary to substantiate sex differences in stress effects on memory function in humans and to understand mechanisms whereby estrogen may influence the stress response in rats. Nonetheless, recent studies show sexually differentiated cognitive responses to chronic stress and underline the importance of considering the sex/gender of subjects when studying the stress response.  相似文献   

19.
CNTF对应激大鼠行为障碍和海马CA1神经元损害的作用   总被引:5,自引:0,他引:5  
实验采用 open field测定、 Nissl染色、 Bielschowsky-Gros-Lawrentjew染色和常规透射电镜技术,观察急性和慢性足底电击应激大鼠的open field行为和海马CA1神经元形态的变化,及双侧海马注射睫状神经营养因子(CNTF)对它的影响。结果表明,急性应激大鼠open field行为活动增加,海马CA1神经元形态无明显变化;慢性应激大鼠open field行为活动减少,海马CA1神经元出现明显的损伤性形态变化;睫状神经营养因子对对照组大鼠和急性应激大鼠的open field行为和海马CA1神经元形态均无明显作用,但可显著减轻慢性应激大鼠海马CA1神经元损伤程度,改善其行为障碍。实验结果提示睫状神经营养因子可能通过保护海马神经元从而改善慢性应激大鼠的行为障碍。  相似文献   

20.
We have studied the effects of an acute predator stress experience on spatial learning and memory in adult male and female Sprague-Dawley rats. All rats were trained to learn the location of a hidden escape platform in the radial-arm water maze (RAWM), a hippocampus-dependent spatial memory task. In the control (non-stress) condition, female rats were superior to the males in the accuracy and consistency of their spatial memory performance tested over multiple days of training. In the stress condition, rats were exposed to the cat for 30 min immediately before or after learning, or before the 24-h memory test. Predator stress dramatically increased corticosterone levels in males and females, with females exhibiting greater baseline and stress-evoked responses than males. Despite these sex differences in the overall magnitudes of corticosterone levels, there were significant sex-independent correlations involving basal and stress-evoked corticosterone levels, and memory performance. Most importantly, predator stress impaired short-term memory, as well as processes involved in memory consolidation and retrieval, in male and female rats. Overall, we have found that an intense, ethologically relevant stressor produced a largely equivalent impairment of memory in male and female rats, and sex-independent corticosterone-memory correlations. These findings may provide insight into commonalities in how traumatic stress affects the brain and memory in men and women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号