首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The study of memory modulation in infant rats has typically focused on reminder/retrieval treatments involving reexposure to components of the internal or external training context. Rarely have studies employed pharmacological treatments to investigate the neurochemical substrates of memory storage in preweanling rats. The present study investigated the effect of 100 mg/kg of glucose, a common memory modulator in adult mammals, on memory for passive-avoidance conditioning in 18-day-old Sprague-Dawley rats. Subjects that were administered an immediate post-training injection of glucose performed significantly better, on a retention test 24 h following training, than those animals that received saline. The glucose group also performed comparably to a control group that was tested 10 min following training. These results are consistent with those of the memory modulation literature in adults and suggest that the rapid rate of forgetting in immature organisms may be the result of a deficiency in a general memory modulatory system.  相似文献   

2.
Epinephrine released or administered soon after a given training task modulates memory processes. Since epinephrine does not readily cross the blood–brain barrier, studies have suggested that some of the central effects of epinephrine might be mediated by peripheral release of glucose. These experiments examined the involvement of blood glucose levels in the posttraining effects of peripherally administered epinephrine. The effects of the administration of epinephrine (25 and 625 mg/kg) on memory of an inhibitory avoidance task were evaluated in fed and fasted rats (depleted glycogen stores in liver). Blood glucose levels after the task in each group were also measured. Female Wistar rats were divided in two groups. Fed and 48-h-fasted animals were submitted to the inhibitory avoidance task and received ip epinephrine or saline immediately after training. The test session was carried out 48 h after training. Epinephrine (25 or 625 mg/kg) caused an increased glycemia in fed rats, but no effect was observed in fasted animals. Administration of epinephrine 25 mg/kg induced a facilitation of memory, while epinephrine 625 mg/kg impaired retention (either in fasted or in fed animals). There was no relation between increased glycemia induced by epinephrine and its effects on memory, since this drug presented its classical effects independently of the previous state of the animal (fed or fasted). The results of the present study suggest that the effects of systemic released or administered epinephrine on memory processes are not dependent on hepatic glucose release.  相似文献   

3.
A common finding in studies of classification learning is that ability to classify the prototype of a category declines much less over a retention interval than does the ability to classify the previously seen exemplars themselves. We demonstrate here that this finding does not necessarily indicate the existence, in memory, of a representation of the prototype. MINERVA, a computer-simulation model that encodes memory traces only of presented exemplars, was tested on an appropriate task. Differential forgetting of prototypes and old instances was shown by a version of the model that assumed that (1) classification is based on the exemplar trace most similar to the test stimulus and (2) individual properties are lost from the traces over time in an all-or-none fashion. It is suggested that, in general, the key to the prediction of differential forgetting may be the concomitance of forgetting and generalization.  相似文献   

4.
Extensive evidence shows that hippocampal infusions of glucose enhance spontaneous alternation (SA) performance or reverse deficits in this task. The current experiments determined whether the enhancing effects of hippocampal infusions of glucose are restricted to spatial working memory. Specifically we tested whether hippocampal infusions of glucose would reverse deficits in an emotional reference memory task (continuous multiple trial inhibitory avoidance [CMIA]) produced by septal infusions of the gamma-aminobutyric acid agonist muscimol. Male Sprague-Dawley rats were given septal infusions of vehicle or muscimol (0.15 nmol: SA; 5 nmol: CMIA) combined with hippocampal infusions of vehicle or glucose (50 nmol) 15 min prior to assessing SA or CMIA training. CMIA retention was tested 48 h later. Muscimol infusions decreased percent alternation scores and avoidance retention latencies. Importantly, hippocampal infusions of glucose reversed the deficits produced by the septal muscimol infusions on both tasks. These findings show for the first time that hippocampal glucose infusions also influence emotional memory, indicating that the enhancing effects of glucose generalize to memory tasks that vary in motivational and cognitive demand.  相似文献   

5.
为了解不同血糖水平下链脲佐菌素诱导鼠(STZ鼠)探究行为与学习和记忆的变化情况,把60只STZ鼠按血糖水平分成高血糖组、良好血糖组和低血糖组3组,进行延迟时间、探究时间测定和小鼠跳台试验,并与正常对照组比较。结果发现,良好血糖组与正常对照组各检测指标均相近;3组STZ鼠延迟时间、完成迷津作业时间均按血糖值递增;组间差异显著;小鼠跳台试验中高血糖组的错误数最多,24小时后错误数最少,前后差值有组间差异;延迟时间、探究时间与血糖呈显著正相关,错误数差值与血糖呈显著负相关。结果表明,高血糖鼠的探究行为和学习能力最差,但对被动回避学习的记忆保持相对较好。  相似文献   

6.
Although septal infusions of glucose typically have positive effects on memory, we have shown repeatedly that this treatment exacerbates memory deficits produced by co-infusions of gamma-aminobutyric acid (GABA) receptor agonists. The present experiments tested whether this negative interaction between glucose and GABA in the medial septum would be observed in the hippocampus, a brain region where glucose typically has positive effects on memory. Specifically, we determined whether hippocampal infusions of glucose would reverse or exacerbate memory deficits produced by hippocampal co-infusions of the GABA receptor agonist muscimol. Fifteen minutes prior to either assessing spontaneous alternation (SA) or continuous multiple trial inhibitory avoidance (CMIA) training, male Sprague-Dawley-derived rats were given bilateral hippocampal infusions of vehicle (phosphate-buffered saline [PBS], 1 microl/2 min), glucose (33 or 50 nmol), muscimol (0.3 or 0.4 microg, SA or 3 microg, CMIA) or muscimol and glucose combined in one solution. The results indicated that hippocampal infusions of muscimol alone decreased SA scores and CMIA retention latencies. More importantly, hippocampal infusions of glucose, at doses that had no effect when infused alone, attenuated (33 nmol) or reversed (50 nmol) the muscimol-induced memory deficits. Thus, although co-infusions of glucose with muscimol into the medial septum impair memory, the present findings show that an opposite effect is observed in the hippocampus. Collectively, these findings suggest that the memory-impairing interaction between glucose and GABA in the medial septum is not a general property of the brain, but rather is brain region-dependent.  相似文献   

7.
Three groups of preschool children (aged 18 to 28, 33 to 42, and 47 to 58 months) were given a radial search test similar to the radial arm maze used with nonhuman subjects. The children searched for chocolate sweets among 10 labeled locations in a room, 5 of which were baited with a sweet. Older children outperformed the intermediate group, who in turn outperformed the youngest group in requiring fewer choices to retrieve all of the sweets. Working memory and reference memory aspects of performance were then separated: Reference memory (restriction of choices to the baited subset) in older children was superior to that in the youngest group but not to that in the intermediate group. In terms of working memory (avoidance of repeat responses to already visited locations), the older group made fewer errors than the intermediate group, who, in turn, made fewer errors than the youngest group. We concluded that working and reference components of spatial memory in children may share common elements, perhaps the ability to recognize places as familiar, although reference memory may develop earlier than working memory.  相似文献   

8.
Arousal enhances memory in human participants and this enhancing effect is likely due to the release of peripheral epinephrine. As epinephrine does not readily enter the brain, one way that peripheral epinephrine may enhance memory is by increasing circulating blood glucose levels. The present study investigated the possibility that emotionally arousing color pictures would improve memory and elevate blood glucose levels in human participants. Blood glucose levels were measured before, 15 min, and 30 min after male university students viewed 60 emotionally arousing or relatively neutral pictures. Participants viewed each picture for 6 s and then had 10 s to rate the arousal (emotional intensity) and valence (pleasantness) of each picture. A free-recall memory test was given 30 min after the last picture was viewed. Although the emotionally arousing and neutral picture sets were given comparable valence ratings, participants who viewed the emotionally arousing pictures rated the pictures as being more arousing, recalled more pictures, and had higher blood glucose levels after viewing the pictures than did participants who viewed the neutral pictures. These findings indicate that emotionally arousing pictures increase blood glucose levels and enhance memory, and that this effect is not due to differences in the degree of pleasantness of the stimuli. These findings support the possibility that increases in circulating blood glucose levels in response to emotional arousal may be part of the biological mechanism that allows emotional arousal to enhance memory.  相似文献   

9.
Septal infusions of glucose exacerbate memory deficits produced by co-infusions of drugs that increase gamma-aminobutyric acid (GABA)(A) receptor activity. To further understand the interaction between glucose and GABA, this experiment tested whether glucose would also potentiate spatial working memory deficits produced by septal infusions of the GABA(B) receptor agonist baclofen. Fifteen minutes prior to assessing spontaneous alternation (SA), male Sprague-Dawley derived rats were given septal infusions of vehicle, glucose (33 nmol), baclofen (0.1 nmol), or glucose combined with baclofen in one solution. Septal co-infusions of glucose with baclofen, at doses that individually had no effect, significantly impaired SA. Thus, the memory-impairing effects of glucose are observed with either GABA(A) or GABA(B) receptor ligands. This raises the possibility that glucose may impair memory by increasing synaptic levels of GABA and subsequent activation of these different receptor subtypes. These effects of glucose could contribute to the memory-impairing effects of hyperglycemia.  相似文献   

10.
Given the need for a memory representation of well-learned motor skills, a common assumption in motor behavior is that this knowledge is stored in a central, abstracted form. Active production of motor skills has not been used in experimental designs that have provided empirical support for this view of representation, however. Much of the faith in centralized, abstracted forms of memory representation for motor skills is due to the popularity of Schmidt's schema theory, which has adapted the prototype abstraction model from category learning research to the representation of motor skills. Since schema theory was proposed, however, an alternative view that seriously questions the preeminence of the prototype abstraction model for the central representation of knowledge has arisen in the category learning literature. This particular view, termed the specific exemplar model, has led a number of researchers in cognition to develop mixed models that involve both prototypic abstraction and specific exemplar elements. This note, then, identifies what can be perceived as a gap in the empirical knowledge base in motor behavior and discusses the possibility of using the debate about representation for category learning as a stimulus for initiating a similar investigation into the representation of motor skills. A hypothetical specific exemplar model for the memory representation of motor skills is outlined, and possible empirical comparisons between this model and the schema abstraction model are suggested.  相似文献   

11.
Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber, for 10 min. The procedure was repeated twice with a 24-h interval. The difference in the exploratory activity between the first (training) and the second (testing) exposures to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of glucose (10–300 mg/kg) enhanced retention in a dose-related manner, although only the dose of 30 mg/kg of glucose produced significant effects. Thus, the dose–response curve adopted an inverted U-shaped form. Glucose (30 mg/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of glucose on retention were time-dependent, suggesting an action on memory storage. The memory-improving actions of glucose were prevented by the simultaneous administration of both the central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) and by the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg). In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, prevented the effects of glucose on retention. Low subeffective doses of glucose (10 mg/kg) and the central anticholinesterase physostigmine (35 μg/kg), but not neostigmine (35 μg/kg), given together, act synergistically and facilitated retention. We suggest that glucose modulates memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through an enhancement of brain acetylcholine synthesis and/or its release.  相似文献   

12.
Although glucose typically enhances memory or reverses memory deficits, glucose can also produce memory deficits when co-infused with the gamma-aminobutyric acid (GABA) agonist muscimol into the medial septum (Parent & Gold, 1997; Parent, Laurey, Wilkniss, & Gold, 1997). To date the mechanisms underlying the memory-impairing interaction between GABA and glucose remain unknown. Here we investigate whether this effect is the result of hyperosmolar conditions or may involve glucose metabolism. Male Sprague-Dawley rats were given one-trial inhibitory avoidance training after receiving septal infusions of vehicle (phosphate-buffered saline, 0.5 microl), the GABA(A) agonist muscimol (3 nmol), glucose (16.5, 33, or 66 nmol), fructose (33 nmol), pyruvate (33 nmol), or a solution containing muscimol combined with glucose, fructose, or pyruvate. Retention performance was tested 48 h later. Infusions of glucose, pyruvate, fructose, or muscimol alone did not affect retention performance. However, co-infusions of all doses of glucose (16.5, 33, or 66 nmol) or the glycolytic end product pyruvate with muscimol impaired retention performance. Co-infusions of fructose with muscimol did not affect retention performance. These results suggest that the memory-impairing interaction between glucose and muscimol does not result from hyperosmolar conditions, because equiosmolar concentrations of fructose do not mimic the effects of glucose and the memory deficits do not vary as a function of glucose concentration. The finding that pyruvate mimicked the effects of glucose and impaired memory when combined with muscimol suggests that glucose metabolism may be involved in the memory-impairing interaction between glucose and GABA(A) receptors in the medial septum.  相似文献   

13.
Medial thalamic damage is a common cause of severe memory disruption in humans. Both the anterior thalamic nuclei (ATN) and the intralaminar thalamic nuclei (ILN) have been suggested as primary sites of diencephalic injury underlying learning and memory deficits, but their respective roles have yet to be resolved. The present study explicitly compared two spatial memory tasks in male PVGc hooded rats with selective neurotoxic lesions to either (1) the ATN or (2) the rostral ILN (and adjacent lateral mediodorsal thalamic nuclei; ILN/LT lesions). As predicted, the ATN group, but not the ILN/LT group, exhibited clear deficits in the Morris water maze task for the initial acquisition of a fixed hidden platform and its reversal to a new position. The second task examined acquisition of egocentric spatial reference memory for a left or right body turn, using any three arms in an 8-arm water maze on any given trial; contrary to predictions, both lesion groups performed as well as the Sham group. The lack of deficits in ILN/LT rats on this second task contrasted with previous findings reporting a detrimental effect of ILN/LT lesions on egocentric working memory. The clear dissociation between the influence of ATN and ILN/LT lesions with respect to allocentric spatial reference memory in the Morris maze emphasizes that caution is required when interpreting the effects of non-ATN thalamic lesions on spatial memory when the lesions encroach substantial areas of the adjacent ATN region.  相似文献   

14.
Cognitive deficits are among the most important factors leading to poor functional outcomes in schizophrenia, with deficits in declarative memory among the largest and most robust of these. Thus far, attempts to enhance cognition in schizophrenia have shown only modest success, which underlies increasing efforts to develop effective treatment strategies. This review is divided into three main parts. The first section delineates the nature and extent of the deficits in both patients with schizophrenia and in their adult, non-psychotic relatives. The second part focuses on structural and functional abnormalities in the hippocampus, both in people with schizophrenia and in animal studies that model relevant features of the illness. The third section views problems in declarative memory and hippocampal function from the perspective of elevated rates of common medical disorders in schizophrenia, with a focus on insulin insensitivity/diabetes. The likelihood that poor glucose regulation/availability contribute to declarative memory deficits and hippocampal abnormalities is considered, along with the possibility that schizophrenia and poor glucose regulation share common etiologic elements, and with clinical implications of this perspective for enhancing declarative memory.  相似文献   

15.
Given the need for a memory representation of well-learned motor skills, a common assumption in motor behavior is that this knowledge is stored in a central, abstracted form. Active production of motor skills has not been used in experimental designs that have provided empirical support for this view of representation, however. Much of the faith in centralized, abstracted forms of memory representation for motor skills is due to the popularity of Schmidt's schema theory, which has adapted the prototype abstraction model from category learning research to the representation of motor skills. Since schema theory was proposed, however, an alternative view that seriously questions the preeminence of the prototype abstraction model for the central representation of knowledge has arisen in the category learning literature. This particular view, termed the specific exemplar model, has led a number of researchers in cognition to develop mixed models that involve both prototypic abstraction and specific exemplar elements. This note, then, identifies what can be perceived as a gap in the empirical knowledge base in motor behavior and discusses the possibility of using the debate about representation for category learning as a stimulus for initiating a similar investigation into the representation of motor skills. A hypothetical specific exemplar model for the memory representation of motor skills is outlined, and possible empirical comparisons between this model and the schema abstraction model are suggested.  相似文献   

16.
Dissociable prototype learning systems have been demonstrated behaviorally and with neuroimaging in younger adults as well as with patient populations. In A/not-A (AN) prototype learning, participants are shown members of category A during training, and during test are asked to decide whether novel items are in category A or are not in category A. Research suggests that AN learning is mediated by a perceptual learning system. In A/B (AB) prototype learning, participants are shown members of category A and B during training, and during test are asked to decide whether novel items are in category A or category B. In contrast to AN, research suggests that AB learning is mediated by a declarative memory system. The current study examined the effects of normal aging on AN and AB prototype learning. We observed an age-related deficit in AB learning, but an age-related advantage in AN learning. Computational modeling supports one possible interpretation based on narrower selective attentional focus in older adults in the AB task and broader selective attention in the AN task. Neuropsychological testing in older participants suggested that executive functioning and attentional control were associated with better performance in both tasks. However, nonverbal memory was associated with better AN performance, while visual attention was associated with worse AB performance. The results support an interactive memory systems approach and suggest that age-related declines in one memory system can lead to deficits in some tasks, but to enhanced performance in others.  相似文献   

17.
Memories of objects are biased toward what is typical of the category to which they belong. Prior research on memory for emotional facial expressions has demonstrated a bias towards an emotional expression prototype (e.g., slightly happy faces are remembered as happier). We investigate an alternate source of bias in memory for emotional expressions – the central tendency bias. The central tendency bias skews reconstruction of a memory trace towards the center of the distribution for a particular attribute. This bias has been attributed to a Bayesian combination of an imprecise memory for a particular object with prior information about its category. Until now, studies examining the central tendency bias have focused on simple stimuli. We extend this work to socially relevant, complex, emotional facial expressions. We morphed facial expressions on a continuum from sad to happy. Different ranges of emotion were used in four experiments in which participants viewed individual expressions and, after a variable delay, reproduced each face by adjusting a morph to match it. Estimates were biased toward the center of the presented stimulus range, and the bias increased at longer memory delays, consistent with the Bayesian prediction that as trace memory loses precision, category knowledge is given more weight. The central tendency effect persisted within and across emotion categories (sad, neutral, and happy). This article expands the scope of work on inductive category effects to memory for complex, emotional stimuli.  相似文献   

18.
Although personality traits are commonly assumed to be represented in memory as schemata, little research has addressed whether such schemata can be learned from observation. Subjects in three studies classified 60 person instances into group members and nonmembers as defined by the instances' match to a complex personality prototype. To simulate learning of fuzzy categories, each person instance provided conflicting cues to group membership. Learning for instances' group membership was excellent across studies. In Study 1, frequency of cues indicating group membership was greatly overestimated among nongroup instances. In Study 2, schema-consistent memory bias was revealed for person instances. In Study 3, schemata of consistently positive (or negative) traits were learned faster than arbitrary schemata. The findings implicated frequency sensitivity of memory (Estes, 1986), and a model of probabilistic cued-memory retrieval was developed to account for the effects. The findings were then discussed in relation to everyday cognitive performance.  相似文献   

19.
Immediate posttraining intraperitoneal injection of nonconvulsive doses of insulin (2-20 IU/kg) significantly impaired retention of male Swiss mice tested 24 h after training in a one-trial step-through inhibitory avoidance task. The dose-response curve showed a U-shaped form. However, of the doses tested, only 8 IU/kg was effective. Insulin did not affect response latencies in mice not given the footshock on the training trial, indicating that the actions of insulin on retention performance were not due to nonspecific proactive effects on response latencies. The impairing effects of insulin (8 IU/kg) on retention were time-dependent, which suggests that insulin impaired memory storage. The simultaneous administration of glucose (10-1000 mg/kg) antagonized, in a dose-related manner, the actions of insulin (8 IU/kg) on retention, suggesting that the hormone may have produced a hypoglycemic response leading to a decrease in CNS glucose availability with a subsequent memory impairment. Low subeffective doses of atropine (0.5 mg/kg) or mecamylamine (5 mg/kg), but not methylatropine (0.5 mg/kg) or hexamethonium (5 mg/kg), given immediately after training but 10 min before an ineffective dose of insulin (4 IU/kg), interacted with and impaired retention. The central anticholinesterase physostigmine (35 or 70 μg/kg), but not its quaternary analog neostigmine (35 or 70 μg/kg), prevented the memory impairment induced by insulin (8 IU/kg). Considered together, these findings are consistent with the view that a decrease in the CNS glucose availability impairs the synthesis and/or release of acetylcholine in brain regions critically involved in memory storage.  相似文献   

20.
Glucose modulation of memory storage processing   总被引:9,自引:0,他引:9  
Epinephrine, derived from the adrenal medulla, enhances memory storage for several forms of learning. One physiological action of this hormone is to liberate hepatic glucose stores. This experiment tested the possibility that glucose could itself enhance memory. Rats were water deprived, pretrained to drink, pretrained to drink in the behavioral apparatus, and then trained in a one-trial inhibitory (passive) avoidance task. Immediately after the training footshock, the animals each received an injection of glucose (1.0-500 mg/kg). When tested for retention 24 h later, the animals which received 10 or 100 mg/kg doses of glucose exhibited enhanced retention performance; higher and lower doses had no significant effect on the memory tests. Also, glucose injections (100 mg/kg) delayed by 1 h after training had no effect on the retention tests. These findings suggest that the increase in plasma glucose levels subsequent to epinephrine injection may contribute to the effects of epinephrine on memory. In addition, the results suggest that peripheral glucose levels may exert important influences on memory storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号