首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A visual search paradigm was employed to examine hemispheric serial and parallel processing. Stimulus arrays containing 4, 9, or 16 elements were tachistoscopically presented to the right visual field-left hemisphere (RVF-LH) or left visual field-right hemisphere (LVF-RH). Subjects judged whether all of the elements within an array were physically the same (all X's) or whether one (O) was different from the rest. Left hemisphere presentations were processed more quickly and accurately than LVF-RH presentations for all stimulus conditions. As the number of array elements increased, more errors and longer response times were obtained for different stimulus items whereas fewer errors and somewhat shorter response times were obtained for same stimulus items. These and previous results suggest that the left hemisphere obtains an advantage for visual search because of that hemisphere's superiority for fine-grained feature analysis rather than because of a fundamental hemispheric serial/parallel processing dichotomy.  相似文献   

2.
An experiment in matching judgments was designed to examine a role of perceptual process in apparent asymmetry. Recognition of Hirakana letters (Japanese letters) was required. The experimental condition in which stimuli were presented to the left visual field first and to the right visual field second produced more errors for all stimulus intervals (0 to 60 msec.) than experimental conditions where stimuli were presented to the right visual field first and to the left one second. Especially, superiority of the latter condition was marked with the longest stimulus interval employed. These results indicate superiority of the left hemisphere function for recognizing Hirakana letters and suggest that not only memory but also perceptual process contributes to this laterality effect.  相似文献   

3.
Geometric line drawings were presented to normal subjects in the left visual field (LVF) or right visual field (RVF) at various degrees of rotation from a centrally presented vertical standard. The task of the subject was to indicate with a reaction time (RT) response whether the laterally presented stimulus could be rotated into the vertical standard or if it was a rotated mirror image of the standard. In Study 1, an overall right hemisphere superiority was found for RT and accuracy on match trials. Most interestingly, interactions between Visual Field and Rotation Angle for the match accuracy data and between Visual Field and Direction of Rotation (clockwise or counterclockwise) for the match RT slopes were found. These interactions suggested that clockwise rotations were more readily performed in the LVF and counterclockwise rotations in the RVF, consistent with other literature for mental rotation. The purpose of Study 2 was to replicate this finding of visual field differences for rotation direction using a design in which direction and degree of rotation were varied orthogonally. No main effect of Visual Field was found. However, significant interactions between Visual Field and Rotation Angle were found for both RT and accuracy, confirming the presence of visual field differences for rotation direction in a new sample of subjects. These differences were discussed in terms of the possibly greater relevance of medially directed stimuli and a possible hemispheric bias for rotation direction, and in terms of interhemispheric transmission factors.  相似文献   

4.
Hemispheric differences for orthographic and phonological processing   总被引:5,自引:3,他引:2  
The role of hemispheric differences for the encoding of words was assessed by requiring subjects to match tachistoscopically presented word pairs on the basis of their rhyming or visual similarity. The interference between a word pair's orthography and phonology produced matching errors which were differentially affected by the visual field/hemisphere of projection and sex of subject. In general, right visual field/left hemisphere presentations yielded fewer errors when word pairs shared similar phonology under rhyme matching and similar orthography under visual matching. Left visual field/right hemisphere presentations yielded fewer errors when word pairs were phonologically dissimilar under rhyme matching and orthographically dissimilar under visual matching. Males made more errors and demonstrated substantially stronger hemispheric effects than females. These patterns suggested visual field/hemispheric differences for orthographic and phonological encoding occurred during the initial stages of word processing and were more pronounced for male compared to female subjects.  相似文献   

5.
Native Japanese speakers identified three-letter kana stimuli presented to the left visual field and right hemisphere (LVF/RH), to the right visual field and left hemisphere (RVF/LH), or to both visual fields and hemispheres simultaneously (BILATERAL trials). There were fewer errors on RVF/LH and BILATERAL trials than on LVF/RH trials. Qualitative analysis of error patterns indicated that there were many fewer errors of first-letter identification than of last-letter identification, suggesting top-to-bottom scanning of the kana characters. In contrast to similar studies presenting nonword letter trigrams to native English speakers, qualitative error patterns were identical for the three visual field conditions. Taken together with the results of earlier studies, the results of the present experiment indicate that the ubiquitous RVF/LH advantage reflects a left-hemisphere superiority for phonetic processing that generalizes across specific languages. At the same time, qualitative aspects of hemispheric asymmetry differ from one language to the next and may depend on such things as the way in which individual characters map onto the pronunciation of words and nonwords.  相似文献   

6.
以往关于汉字字词识别脑功能偏侧化的研究发现了左半球优势、右半球优势或者大脑两半球均势三种不同的结果。该研究采用一侧化Stroop范式(刺激分别只呈现于左视野、中央视野或右视野中),通过系统地改变刺激呈现时间以期探讨刺激呈现时间是可以解释这些不一致结果的可能因素之一。结果显示:对于右利手被试,在刺激呈现时间为60 ms时右半球出现了较强的Stroop效应,在刺激呈现200 ms时左右半球的Stroop效应没有表现出差异,在刺激呈现时间较长时左半球表现出较强的Stroop效应。该结果提示,随着刺激呈现时间的延长,语义优势发生了从右半球到左半球的转换。  相似文献   

7.
Three experiments measured order of processing for single faces presented to the left or right visual field (VF) using a same-different matching task. In contrast to earlier studies, the stimuli in the present experiments were carefully matched for overall similarity prior to the actual experiments. Experiments 1 and 2 showed that a significant top-to-bottom order of processing occurred for line drawings of unfamiliar faces but not for line drawings of familiar faces. Experiment 3 found evidence supporting top-to-bottom processing for unfamiliar photographic face stimuli. The photographic stimuli in Experiment 3 were matched more quickly when presented in the left VF (right hemisphere); however, this VF asymmetry was not related to previously reported differences in order of processing. It is suggested that under some conditions faces presented to the right hemisphere may be processed more like familiar faces than faces presented to the left hemisphere; however, this difference is not critical for the left VF (right hemisphere) superiority often found in face recognition tasks.  相似文献   

8.
The purpose of this study was to investigate hemispheric functional asymmetry in 18 normal hearing children and 18 congenitally deaf children aged 13-14 years. The task was identification of a visual stimulus (3-letter word or photograph of a face) presented in either the left or right visual field. The children responded by pointing to the target stimulus on a response card which contained four different words or three different faces. The percentage of errors for presentations to the two visual fields were analysed to determine hemispheric dominance. The pattern of hemispheric differences for the hearing children was consistent with that from previous investigations. The results for the deaf children differed from those of the normals. In word perception we observed a right hemisphere advantage and in the face recognition a lack of hemispheric differences. These results point to a lack of auditory experiences which is affecting the functional organization of the two hemispheres. It is suggested that the necessity to make use of visuo-spatial information in the process of communication causes right hemisphere dominance in verbal tasks. This may influence the perception of other visuo-spatial stimuli which may yield a lack of hemispheric asymmetry in face recognition.  相似文献   

9.
Hemispheric predominance has been well documented in the visual perception of alphabetic words. However, the hemispheric processing of lexical information in Chinese character recognition and its relationship to reading performance are far from clear. In the divided visual field paradigm, participants were required to judge the orthography, phonology, or semantics of Chinese characters, which were presented randomly in the left or right visual field. The results showed a right visual field/left hemispheric superiority in the phonological judgment task, but no hemispheric advantage in the orthographic or semantic task was found. In addition, reaction times in the right visual field for phonological and semantic tasks were significantly correlated with the reading test score. These results suggest that both hemispheres involved in the orthographic and semantic processing of Chinese characters, and that the left lateralized phonological processing is important for Chinese fluent reading.  相似文献   

10.
In Experiment 1 uncued recognition of single letters presented in left or right visual fields showed no hemispheric asymmetry, but cuing by alternatives produced a left-hemisphere advantage. Uncued recognition of words was better in the right visual field (left hemisphere), and this advantage was unchanged by cuing by alternatives or cuing by class. In Experiment 2 a mixed series of words, digits, and dots was presented. Uncued trials showed no asymmetry, but when a precue indicated which type or stimulus would appear next, a left-hemisphere advantage for words was evident. Cuing also produced a nonsignificant shift toward a left-hemisphere advantage for digits and a right-hemisphere advantage for dots. The asymmetrical effects of cuing can be explained by Kinsbourne's attentional model of lateralization, which suggests that cuing may selectively activate one hemisphere, and so bias attention toward the contralateral visual field. Repetition effects within and between visual fields were analyzed but no asymmetries were found.  相似文献   

11.
12.
Event-Related Potentials were recorded over occipital and parietal scalp from left- and right-handed adults presented with a language and a non-language visual stimulus using a divided field, "oddball" paradigm. The major finding of interest was that the P300 component was larger over the left than the right hemisphere of the right-handers when the language stimulus was presented to the left hemisphere; there were no hemispheric differences for the left-handers, regardless of field of presentation. These results are discussed in the context of developing noninvasive measures to lateralize language function.  相似文献   

13.
Subjects were presented with either verbal (letters) or nonverbal (outline forms) stimuli to their left or right cerebral hemispheres. Verbal items presented with a lateral masking stimulus were identified more quickly and accurately when presented to the right hemisphere rather than to the left. When the letters were presented without a masking stimulus, weak hemispheric effects were obtained. Nonverbal forms demonstrated faster reaction time and fewer errors for right-hemisphere presentations under both masked and unmasked conditions. Retinal locus of the display item was also varied and produced faster responding with fewer errors when the stimulus was presented foveally rather than peripherally under all display conditions. These effects were attributed to the use of a manual response procedure that effectively reduced the ability of subjects to employ names for the stimulus objects.  相似文献   

14.
Functional hemispheric specialization in recognizing faces expressing emotions was investigated in 18 normal hearing and 18 congenitally deaf children aged 13-14 years. Three kinds of faces were presented: happy, to express positive emotions, sad, to express negative emotions, and neutral. The subjects' task was to recognize the test face exposed for 20 msec in the left or right visual field. The subjects answered by pointing at the exposed stimulus on the response card that contained three different faces. The errors committed in expositions of faces in the left and right visual field were analyzed. In the control group the right hemisphere dominated in case of sad and neutral faces. There were no significant differences in recognition of happy faces. The differentiated hemispheric organization pattern in normal hearing persons supports the hypothesis of different processing of positive and negative emotions expressed by faces. The observed hemispheric asymmetry was a result of two factors: (1) processing of faces as complex patterns requiring visuo-spatial analysis, and (2) processing of emotions contained in them. Functional hemispheric asymmetry was not observed in the group of deaf children for any kind of emotion expressed in the presented faces. The results suggest that lack of auditory experience influences the organization of functional hemispheric specialization. It can be supposed that in deaf children, the analysis of information contained in emotional faces takes place in both hemispheres.  相似文献   

15.
Three experiments dealing with hemispheric specialization are presented. In Experiment 1, words and/or faces were presented tachistoscopically to the left or right of fixation. Words were more accurately identified in the right visual field and faces were more accurately identified in the left visual field. A forced choice error analysis for words indicated that errors made for word stimuli were most frequently visually similar words and this effect was particularly pronounced in the left visual field. Two additional experiments supported this finding. On the basis of the results, it was argued that word identification is a multistage process, with visual feature analysis carried out by the right hemisphere and identification and naming by the left hemisphere. In addition, Kinsbourne's attentional model of brain function was rejected in favor of an anatomical model which suggests that simultaneous processing of verbal and nonverbal information does not constrict the attention of either hemisphere.  相似文献   

16.
Two hypotheses of hemispheric specialization are discussed. The first stresses the importance of the kind of processing to which the stimulus is subjected, and the second stresses the importance of the nature of the stimulus. To test these hypotheses, four experiments were carried out. In Experiment 1 verbal material was employed in a same-different classification task, and an overall right visual field superiority was found. Experiment 2, in which verbal stimuli were subjected to visuospatial transformations (i.e. mental rotations), yielded no laterality effect. In Experiment 3 geometrical figures were employed in a classification task similar to that of Experiment 1, and an overall left visual field superiority was found. In Experiment 4 both verbal and geometric stimuli were employed. The results showed a significant interaction between field of presentation and nature of the stimulus and no interaction between field of presentation and level of processing.  相似文献   

17.
Two memory search experiments were conducted using vertically oriented four-letter names and human faces as stimuli. Subjects were required to indicate as quickly and as accurately as possible whether or not a single probe stimulus (presented for 150 msec to either the left or right visual field) was contained in a set of 2, 3, 4, or 5 items being held in short-term memory. The probe stimuli were presented alone (clear condition) or centrally embedded in a matrix of dots (degraded condition). In Experiment 1 (involving names), a right visual field/left hemisphere advantage was obtained and pinpointed at the encoding stage rather than at the memory comparison stage of the information-processing system. For Experiment 2 (involving human faces), no hemispheric advantage was readily observed. In each experiment, both the left hemisphere and the right hemisphere employed an abstract memory comparison operation from which the effects of probe degradation have been removed. These results are discussed in terms of their implications for various models of hemispheric asymmetry.  相似文献   

18.
This study examined hemispheric asymmetry for concurrent processing of object and spatial information. Participants viewed two successive stimuli, each of which consisted of two digits and two pictures that were randomly located and judged them as identical or different. A sample stimulus was presented in a central visual field, followed by a matching stimulus presented briefly in a left or right visual field. The matching stimuli were different from the sample stimuli with respect to the object (digit or picture) or spatial (locations or distances of items) aspect. No visual field asymmetry was found in the detection of object change. However, a left visual field advantage was found in the detection of spatial change. This result can be explained by the double filtering by frequency theory of Ivry and Robertson, who asserted that the left hemisphere has a bias for processing information contained in relatively high spatial frequencies whereas the right hemisphere has a bias for processing information contained in relatively low spatial frequencies. Based upon this evidence, the importance of interhemispheric integration for visual scene perception is discussed.  相似文献   

19.
To investigate hemispheric differences in the timing of word priming, the modulation of event-related potentials by semantic word relationships was examined in each cerebral hemisphere. Primes and targets, either categorically (silk-wool) or associatively (needle-sewing) related, were presented to the left or right visual field in a go/no-go lexical decision task. The results revealed significant reaction-time and physiological differences in both visual fields only for associatively related word pairs, but an electrophysiological difference also tended to reach significance for categorically related words when presented in the left visual field. ERP waveforms showed a different time-course of associative priming effects according to the field of presentation. In the right visual field/left hemisphere, both N400 and Late Positive Component (LPC/P600) were modulated by semantic relatedness, while only a late effect was present in the left visual field/ right hemisphere.  相似文献   

20.
We hypothesized that the right hemisphere would be superior to the left hemisphere in remembering having seen a specific picture before, given its superiority in perceptually encoding specific aspects of visual form. A large set of pictures (N=1500) of animals, human faces, artifacts, landscapes, and art paintings were shown for 2s in central vision, or tachistoscopically (for 100ms) in each half visual field, to normal participants who were then tested 1-6 days later for their recognition. Images that were presented initially to the right hemisphere were better recognized than those presented to the left hemisphere. These results, obtained with participants with intact brains, large number of stimuli, and long retention delays, are consistent with previously described hemispheric differences in the memory of split-brain patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号