首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exceedingly large grip forces that many older adults employ when lifting objects with a precision pinch grip (Cole, 1991) may compensate for a reduced capability to produce a stable isometric force. That is, their grip force may fluctuate enough from moment to moment to yield grip forces that approach the force at which the object would slip from grasp. We examined the within-trial variability of isometric force in old (68-85 years, n = 13) and young (n = 11) human subjects (a) when they were asked to produce a constant pinch force at three target levels (0.49, 2.25, and 10.5 N) with external support of the arm, hand, and force transducer and (b) when they were asked to grasp, lift, and hold a small test object with a precision grip. Pinch force produced in the first task was equally stable across the two subject groups during analysis intervals that lasted 4 s. The elderly subjects produced grip forces when lifting objects that averaged twice as much as those produced by the young subjects. The force variability during the static (hold) phase of the lift for the old subjects was comparable with that used by the young subjects, after adjusting for the difference in grip force. The failure to observe less stable grip force in older adults contradicts a similar recent study. Differences in task (isometric grip force versus isometric abduction torque of a single digit) may account for this conflict, however. Thumb and finger forces for grip are produced through coactivation of many muscles and thus promote smooth force output through temporal summation of twitches. We conclude that peripheral reorganization of muscle in older adults does not yield increased instability of precision grip force and therefore does not contribute directly to increased grip forces in this population. However, force instability may affect other grip configurations (e.g., lateral pinch) or manipulation involving digit abduction or adduction forces.  相似文献   

2.
Diminished tactile sensibility and impaired hand dexterity have been reported for elderly individuals. Reports that younger adults with severely impaired tactile sensibility use excessive grasp force during routine grasp and manipulation tasks raise the possibility that elderly persons likewise produce large grasp forces that may contribute to impaired dexterity. Impaired pseudomotor functioning also occurs in elderly subjects and may yield a slipperier skin surface that enhances the possibility for excessive grasp force. The present study measured grasp force in 10 elderly and 9 young adult individuals, during grasp and vertical lift of a small object, using a precision (pinch) grip of the thumb and index finger. The slipperiness of the object's gripped surfaces was unexpectedly varied. Skin slipperiness was estimated by also measuring the grasp force at which the object slipped from grasp. The older subjects employed grasp forces that were, on average, twice as large as those of the young subjects, with some producing forces many times greater than the young subjects' average grip force. Grip forces also were significantly more variable across trials in older subjects. This increased variability was not caused simply by the elderly subjects' increased grip force. A portion of the increased force was due to increased skin slipperiness. The grip force that the elderly subjects produced in excess of the slip force (the "margin of safety" against object slippage) was larger than would have been predicted from their skin slipperiness, however. It is suggested that, in part, the excessive grasp forces represent a strategic response to tactile sensibility impairment. Twopoint discrimination limina in the older subjects averaged about four times greater than in the younger subjects. Increased grasp forces in elderly persons may result from other factors, such as increased variability in grip force production. The contributions of excessive grasp forces to impaired dexterity in older persons still need to be addressed experimentally.  相似文献   

3.
The authors examined the relationship between peak velocity of a discrete horizontal elbow flexion movement in which the hand path was curvilinear and premovement modulation of precision grip force. The velocity of the movements of 7 participants was varied from maximal velocity to a velocity that required several seconds to reach a target. An object instrumented with force transducers for the forefinger and thumb measured precision grip force. There was a positively accelerating quadratic relationship between grip force change before movement and peak velocity of the ensuing limb movement. On some low-velocity trials, premovement grip force modulation reflected a net decrease. In contrast, high-velocity trials were preceded by net increases in grip force. Using cluster analysis, the authors classified grip forces in low-velocity movements as an empirically distinct set of entities from grip forces in high-velocity movements. The cluster of high-value grip forces suggested an anticipatory strategy that allowed participants a large safety margin in grip force to avoid object slip on movement initiation. The cluster of low-value grip forces at movement initiation suggested a second anticipatory strategy in which participants changed grip force very little, perhaps to increase the ability of proprioceptors in the hand to sense force changes. Those findings suggest that modulation of grip force before initiation of movements in which the hand path is curvilinear may be governed by two distinct velocity-dependent anticipatory strategies.  相似文献   

4.
In this investigation, the authors examined the coordination and control of force production by the digits of the hand as a function of criterion force level and grip configuration. Each adult participant (N = 6: 3 men and 3 women) was required to place the thumb and a finger (or fingers) upon load cells that were fixed to a grasping apparatus that was clamped to a table. In the task, participants had to match a criterion continuous constant total force level displayed on a computer screen. There were 10 trials at each grip configuration and criterion force level combination on each of 3 consecutive days. The results showed that (a) different grip configurations minimized error at each force level; (b) there was a specific digit pairing within a given grip configuration that produced the highest correlation of force output; (c) the correlation between the force output of digits generally increased at higher force levels; (d) error was reduced at each force level and grip configuration over the practice period; and (e) the organization of the force output of each digit varied as a function of digit, force level, grip configuration, and practice. The findings are consistent with the hypothesis that coordination of the digits in prehension is reflective of an adaptive, task-specific solution that is modified with practice.  相似文献   

5.
In this investigation, the authors examined the coordination and control of force production by the digits of the hand as a function of criterion force level and grip configuration. Each adult participant (N = 6: 3 men and 3 women) was required to place the thumb and a finger (or fingers) upon load cells that were fixed to a grasping apparatus that was clamped to a table. In the task, participants had to match a criterion continuous constant total force level displayed on a computer screen. There were 10 trials at each grip configuration and criterion force level combination on each of 3 consecutive days. The results showed that (a) different grip configurations minimized error at each force level; (b) there was a specific digit pairing within a given grip configuration that produced the highest correlation of force output; (c) the correlation between the force output of digits generally increased at higher force levels; (d) error was reduced at each force level and grip configuration over the practice period; and (e) the organization of the force output of each digit varied as a function of digit, force level, grip configuration, and practice. The findings are consistent with the hypothesis that coordination of the digits in prehension is reflective of an adaptive, task-specific solution that is modified with practice.  相似文献   

6.
In this paper, we report the results from two experiments in which subjects were required to discriminate horizontal load forces applied to a manipulandum held with a precision grip. The roughness (and hence friction) of the grip surfaces and required grip force were manipulated. In the first experiment, subjects were instructed to judge the load while maintaining hand position and not letting the manipulandum slip. It was found that performance was influenced by surface texture; a given load was judged to be greater when the surface texture was smooth than when it was rough. This result is consistent with a previous study based on lifting objects and indicates that the effect of surface texture applies to loads in general and not just to gravitational loads (i.e., weight). To test whether the load acting on a smooth object is judged to be greater because the grip force required to prevent it from slipping is larger, a second experiment was carried out. Subjects used a visual feedback display to maintain the same grip force for smooth and rough manipulandum surfaces. In this case, there was no effect of surface texture on load perception. These results provide evidence that perceived load depends on the grip force used to resist the load. The implications of these results in terms of central and peripheral factors underlying load discrimination are considered.  相似文献   

7.
The effect of sensory deficits on power grip force from individual phalanges was examined. The authors found that stroke survivors with sensory deficits (determined by the Semmes-Weinstein monofilament test) gripped with phalanx force directed more tangential to the object surface, than those without, although both groups had similar motor deficits (Chedoke-McMaster and Fugl-Meyer), grip strength, and skin friction. Altered grip force direction elevates risk of finger slippage against the object thus grip loss/object dropping, hindering activities of daily living. Altered grip force direction was associated with altered muscle activation patterns. In summary, the motor impairment level alone may not describe hand motor control in detail. Information about sensory deficits helps elucidate patients' hand motor control with functional relevance.  相似文献   

8.
9.
In this paper, we show that, when lifting an object using a precision grip with the distal pads of the thumb and index finger at its sides, the perceived weight depends on the object’s surface texture. The smoother the surface texture, the greater the perceived weight. We suggest that a smoother object is judged to be heavier because the grip force, normal to the surface, required to prevent it from slipping is greater. The possibility of there being an influence of surface texture per se is excluded by a second experiment that employed a variant of the precision grip in which the thumb supports the weight of the object from underneath. With the grip oriented in this way, there is no need to match grip force to surface texture and, under these conditions, there is no effect of surface texture on weight perception. In the first two experiments, the test and comparison weights were lifted successively by the same hand. In a third experiment, the effect of surface texture was replicated for sequential lifts made with separate hands. Thus, the effect is not restricted to comparisons made with the same hand.  相似文献   

10.
Bimanual coordination is a commonplace activity, but the consequences of using both hands simultaneously are not well understood. The authors examined fingertip forces across 4 experiments in which participants undertook a range of bimanual tasks. They first measured fingertip forces during simultaneous lifts of 2 identical objects, noting that individuals held the objects with more force bimanually than unimanually. They then varied the mass of the objects held by each hand, noting that when both hands lifted together performance was equivalent to unimanual lifts. The authors next measured one hand's static grip force while the other hand lifted an object. They found a gradual reduction of grip force throughout the trial, but once again no evidence of one hand influencing the other. In the final experiment the authors tested whether tapping with one hand could influence the static grip force of its counterpart. Although the authors found no changes in static grip force as a direct consequence of the other hand's actions, they found clear differences from one task to the other, suggesting an effect of task instruction. Overall, these results suggest that fingertip forces are largely independent between hands in a bimanual lifting context, but are sensitive to different task requirements.  相似文献   

11.
The authors investigated whether older adults (n = 16; mean age = 65 years) increased grip force to compensate for load force fluctuations during up and down movements more than young adults did (n = 16; mean age = 24 years) and whether older and young adults exhibited similar adaptation of grip force to alterations in friction associated with changes in object surface texture. As previously reported, older adults used a higher level of grip force than young adults during static holding. Increased grip force was observed in the older group during movement. The increase was appropriate to the lower coefficient of friction estimated for the older group. In both groups, grip force was greater with a smooth than with a rough surface (the latter having the higher coefficient of friction) during static holding and during movement. Moreover, grip force modulation was equally well synchronized with load force fluctuation during movement in the two groups. The authors concluded that changes in organization of grip force with age are well adapted to change in hand-object interface properties. Elevated grip force in older adults does not necessarily signify a fundamental change in synchronizing grip force modulation with load force fluctuation.  相似文献   

12.
The authors investigated whether older adults (n = 16; mean age = 65 years) increased grip force to compensate for load force fluctuations during up and down movements more than young adults did (n = 16; mean age = 24 years) and whether older and young adults exhibited similar adaptation of grip force to alterations in friction associated with changes in object surface texture. As previously reported, older adults used a higher level of grip force than young adults during static holding. Increased grip force was observed in the older group during movement. The increase was appropriate to the lower coefficient of friction estimated for the older group. In both groups, grip force was greater with a smooth than with a rough surface (the latter having the higher coefficient of friction) during static holding and during movement. Moreover, grip force modulation was equally well synchronized with load force fluctuation during movement in the two groups. The authors concluded that changes in organization of grip force with age are well adapted to change in hand-object interface properties. Elevated grip force in older adults does not necessarily signify a fundamental change in synchronizing grip force modulation with load force fluctuation.  相似文献   

13.
Abstract

Recent evidence suggests that visual feedback influences the adjustment of grip force to the changing load force exerted by a grasped object as it is manipulated. The current project investigated how visual feedback of object kinematics affects the coupling of grip force to load force by scaling the apparent displacements of the object viewed in virtual reality. Participants moved the object to manually track a moving virtual target. The predictability of the changing load force exerted by the object was also manipulated by altering the nature of target trajectories (and therefore the nature of object motions). When apparent object displacements increased in magnitude, grip force became more tightly coupled to load force over time. Furthermore, when load force variations were less predictable, the magnitude of apparent object displacements affected the relative degree of continuous versus intermittent coupling of grip force to load force. These findings show that visual feedback of object motion affects the ongoing dynamical coupling between grip force control and load force experienced during manipulation of a grasped object.  相似文献   

14.
Although chimpanzees generally grasp small objects imprecisely between the knuckle joint of the index finger and thumb, they are capable of a true precision grip, which resembles the human pincer grip. They also grip small objects between the index and middle finger. The development of these precision grips takes place over several years into adulthood and they are not frequent before 8 years of age. Precision grips and imprecise grips are equally likely to be selected for objects of small size. Thus, not only is precise prehension relatively delayed in chimpanzees but also there is lack of consistency in selecting the distal parts of the index finger for thumb opposition. This is a qualitatively different developmental pattern than occurs in human infants who systematically select precision grips for small objects by 15 months.  相似文献   

15.
Healthy subjects adjust their grip force economically to the weight of a hand-held object. In addition, inertial loads, which arise from arm movements with the grasped object, are anticipated by parallel grip force modulations. Internal forward models have been proposed to predict the consequences of voluntary movements. Anesthesia of the fingers impairs grip force economy but the feedforward character of the grip force/load coupling is preserved. To further analyze the role of sensory input for internal forward models and to characterize the consequences of central nervous system damage for anticipatory grip force control, we measured grip force behavior in neurological patients. We tested a group of stroke patients with varying degrees of impaired fine motor control and sensory loss, a single patient with complete and permanent differentation from all tactile and proprioceptive input, and a group of patients with amyotrophic lateral sclerosis (ALS) that exclusively impairs the motor system without affecting sensory modalities. Increased grip forces were a common finding in all patients. Sensory deficits were a strong but not the only predictor of impaired grip force economy. The feedforward mode of grip force control was typically preserved in the stroke patients despite their central sensory deficits, but was severely disturbed in the patient with peripheral sensory deafferentation and in a minority of stroke patients. Moderate deficits of feedforward control were also obvious in ALS patients. Thus, the function of the internal forward model and the precision of grip force production may depend on a complex anatomical and functional network of sensory and motor structures and their interaction in time and space.  相似文献   

16.
17.
Several parameters related to the timing, grip force and load force involved in a precision grasping task were studied in patients with Parkinson's disease (PD) at different moments of medication and healthy controls, using a sensorized anthropomorphic device which was totally adapted to the human hand. The aim of this work was to carry out an accurate study of the reach-load-grip-hold-place-release subtasks to identify any physical motor impairment, its relation to medication and Parkinsonian strategies. Twenty seven patients in ON and OFF-like medication moments, and twenty seven age-matched controls took part in the experiment, which consisted of using the index finger and the thumb to perform a precision motor task involving different experimental objects. Visual cues were used as distracting elements. Results showed several motor parameters impaired in OFF-like medication moment but attenuated in ON state, suggesting a medication effect on the performance of the task.  相似文献   

18.
The task of supporting an object with one or two hands was used to test the applicability of the notion of synergy. Subjects sat with their dominant forearm supported up to the wrist while holding a cylindrical “cup” between their thumb and fingers. Force transducers recorded the grip force applied normal to the cup's side by the thumb and the force applied normal to the cup bottom. On different series, a supporting force was added to and released from the bottom of the cup by the subject's non-dominant hand or by the experimenter. As predicted, the results indicated feedforward adjustments of the grip force, and of the EMGs, and significant correlations between grip force and supporting force when they were produced by two hands of one person, and the lack of such closely tied changes when the two forces were produced by two different persons. In the latter case, different subjects could demonstrate grip force changes in different directions. The findings suggest that grip force adjustments represented peripheral patterns of a single central process (a single synergy) rather than being separately controlled focal and postural components of the action.PsycINFO classification: 2330  相似文献   

19.
We investigated how exploratory movement influences signal integration in active touch. Participants judged the amplitude of a bump specified by redundant signals: When a finger slides across a bump, the finger’s position follows the bump’s geometry (position signal); simultaneously, it is exposed to patterns of forces depending on the gradient of the bump (force signal). We varied amplitudes specified by force signals independently of amplitudes specified by position signals. Amplitude judgment was a weighted linear function of the amplitudes specified by both signals, under different exploratory conditions. The force signal’s contribution to the judgment was higher when the participants explored with the index finger, as opposed to the thumb, and when they explored along a tangential axis, as opposed to a radial one (pivot ≌ shoulder joint). Furthermore, for tangential, as compared with radial, axis exploration, amplitude judgments were larger (and more accurate), and amplitude discrimination was better. We attribute these exploration-induced differences to biases in estimating bump amplitude from force signals. Given the choice, the participants preferred tangential explorations with the index finger—a behavior that resulted in good discrimination performance. A role for an active explorer, as well as biases that depend on exploration, should be taken into account when signal integration models are extended to active touch.  相似文献   

20.
The “raspberry task” represents a precision grip task that requires continuous adjustment of grip and pull forces. During this task subjects grip a specialized grip rod and have to increase the pull force linearly while the rod is locked. The aim of this study was to determine whether an associated, initially neutral cue is able to evoke pull-force changes in the raspberry task. A standard delay paradigm was used to study cued pull-force changes during an ongoing movement resulting in unloading. Pull force and EMG activity of hand and arm muscles were recorded from 13 healthy, young subjects. The cue was associated with a complex change in motor behavior.In this task, cued force changes take place more rapidly than in protective reflex systems (in median after the second presentation of the cueing stimulus). A cued force change was detectable in two-thirds of paired trials. Although the force change is produced by a decrease of the EMG activity in several grip- and pull-force-producing muscles, the most significant effect in the majority of the subjects was an increase of the activity of the flexor carpi ulnaris muscle which antagonises corresponding pull-force-producing muscles. Cued force changes require adequately and precisely controlled activation of the muscle groups involved in the movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号