首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three experiments investigated the role of attention and motor preparation for the control of goal-directed movements. In Experiment 1 (double step paradigm), a movement correction was required on 25% of the trials towards the left or right of the initial target. Within these 25% of trials, the probability of location of the second target was manipulated. The efficiency of movement control increased when increasing the probability of correcting the movement in a given direction. In Experiment 2, attentional processes were isolated by asking the subjects to verbally detect the more or less probable target displacement, without correcting their movement. Subjects were able to orient visual attention during movement execution, thus improving the processing of visual feedbacks from target displacement. In Experiment 3, motor preparation processes were isolated by asking the subjects to correct their movement towards a fixed target in response to a more or less probable mechanical perturbation. It was shown that motor preparation not only specifies the initial movement parameters but may also include some parameters of the most probable movement modulations. Overall, these results highlight the role of both attentional and motor preparation processes in the control of goal-directed movements and suggest that the feedback-based corrections of the movement are modulated by a feedforward control.  相似文献   

2.
The relationship between attention and the programming of motor responses was investigated, using a paradigm in which the onsets of targets for movements were preceded by peripheral attentional cues. Simple (button release) and reaching manual responses were compared under conditions in which the subjects either made saccades toward the target location or refrained from making eye movements. The timing of the movement onset was used as the dependent measure for both simple and reaching manual responses. Eye movement latencies were also measured. A follow-up experiment measured the effect of the same peripheral cuing procedure on purely visual processes, using signal detection measures of visual sensitivity and response bias. The results of the first experiment showed that reaction time (RT) increased with the distance between the cued and the target locations. Stronger distance effects were observed when goal-directed responses were required, which suggests enhanced attentional localization of target positions under these conditions. The requirement to generate an eye movement response was found to delay simple manual RTs. However, mean reaching RTs were unaffected by the eye movement condition. Distance gradients on eye movement latencies were relatively shallow, as compared with those on goal-directed manual responses. The second experiment showed that the peripheral cue had only a very small effect on visual detection sensitivity in the absence of directed motor responses. It is concluded that cue-target distance effects with peripheral cues are modulated by the motor-programming requirements of the task. The effect of the peripheral cue on eye movement latencies was qualitatively different from that observed on manual RTs, indicating the existence of separate neural representations underlying both response types. At the same time, the interactions between response modalities are consistent with a supramodal representation of attentional space, within which different motor programs may interact.  相似文献   

3.
The relationship between attention and the programming of motor responses was investigated, using a paradigm in which the onsets of targets for movements were preceded by peripheral attentional cues. Simple (button release) and reaching manual responses were compared under conditions in which the subjects either made saccades toward the target location or refrained from making eye movements. The timing of the movement onset was used as the dependent measure for both simple and reaching manual responses. Eye movement latencies were also measured. A follow-up experiment measured the effect of the same peripheral cuing procedure on purely visual processes, using signal detection mea-sures of visual sensitivity and response bias. The results of the first experiment showed that reaction time (RT) increased with the distance between the cued and the target locations. Stronger distance ef-fects were observed when goal-directed responses were required, which suggests enhanced attentional localization of target positions under these conditions. The requirement to generate an eye movement response was found to delay simple manual RTs. However, mean reaching RTs were unaffected by the eye movement condition. Distance gradients on eye movement latencies were relatively shallow, as compared with those on goal-directed manual responses. The second experiment showed that the peripheral cue had only a very small effect on visual detection sensitivity in the absence of directed motor responses. It is concluded that cue-target distance effects with peripheral cues are modulated by the motor-programming requirements of the task. The effect of the peripheral cue on eye movement latencies was qualitatively different from that observed on manual RTs, indicating the existence of separate neural representations underlying both response types. At the same time, the interactions be-tween response modalities are consistent with a supramodal representation of attentional space, within which different motor programs may interact.  相似文献   

4.
Motor overflow refers to involuntary movement or muscle activity that may coincide with voluntary movement. This study examined factors influencing motor overflow in 17 children (8-11 years), and 17 adults (18-35 years). Participants performed a finger pressing task by exerting either 33% or 66% of their maximal force output using their dominant or non-dominant hand. Attention was manipulated by tactile stimulation to one or both hands. Overflow relative to the target force was greater in children compared to adults, and at the lower target force for both groups, but was not influenced by attentional stimulation. Childhood overflow was greater when the left-hand performed the task. Although an immature motor system may underlie an inability to suppress involuntary movement, childhood overflow may provide motor stabilization.  相似文献   

5.
Sharing numerous characteristics with suppression in the other senses, tactile suppression is a reliable phenomenon that accompanies movement. By investigating the simplest of movements (e.g., finger flexions), early research tried to explain the origins of the phenomenon in terms of motor command generation together with sensory reafference. Here, we review recent research that has delved into (naturalistic) goal-directed movements. In connection with goal-directed movement, tactile suppression is evident as a decrease in behavioural performance measured shortly prior to, and during, movement execution. It is also reflected in a consistent response bias highlighting the (perceptual) uncertainty of the movement. Goal-directed movement supports the forward model and establishes contextual influences as the defining influences on tactile suppression. Depending on the task at hand, people prioritize a certain percept during movement. Future research, we argue, should focus on studying naturalistic movements, or sequences of movements, that share a common meaning or goal.  相似文献   

6.
The primary purpose of this experiment was to determine if left hand reaction time advantages in manual aiming result from a right hemisphere attentional advantage or an early right hemisphere role in movement preparation. Right-handed participants were required to either make rapid goal-directed movements to small targets or simply lift their hand upon target illumination. The amount of advance information about the target for a particular trial was manipulated by precuing a subset of potential targets prior to the reaction time interval. When participants were required to make aiming movements to targets in left space, the left hand enjoyed a reaction advantage that was not present for aiming in right space or simple finger lifts. This advantage was independent of the amount or type of advance information provided by the precue. This finding supports the movement planning hypothesis. With respect to movement execution, participants completed their aiming movements more quickly when aiming with their right hand, particularly in right space. This right hand advantage in right space was due to the time required to decelerate the movement and to make feedback-based adjustments late in the movement trajectory.  相似文献   

7.
Executed bimanual movements are prepared slower when moving to symbolically different than when moving to symbolically same targets and when targets are mapped to target locations in a left/right fashion than when they are mapped in an inner/outer fashion [Weigelt et al. (Psychol Res 71:238–447, 2007)]. We investigated whether these cognitive bimanual coordination constraints are observable in motor imagery. Participants performed fast bimanual reaching movements from start to target buttons. Symbolic target similarity and mapping were manipulated. Participants performed four action conditions: one execution and three imagination conditions. In the latter they indicated starting, ending, or starting and ending of the movement. We measured movement preparation (RT), movement execution (MT) and the combined duration of movement preparation and execution (RTMT). In all action conditions RTs and MTs were longer in movements towards different targets than in movements towards same targets. Further, RTMTs were longer when targets were mapped to target locations in a left/right fashion than when they were mapped in an inner/outer fashion, again in all action conditions. RTMTs in imagination and execution were similar, apart from the imagination condition in which participants indicated the start and the end of the movement. Here MTs, but not RTs, were longer than in the execution condition. In conclusion, cognitive coordination constraints are present in the motor imagery of fast (<1600 ms) bimanual movements. Further, alternations between inhibition and execution may prolong the duration of motor imagery.  相似文献   

8.
The intention to execute a movement can modulate our perception of sensory events, and this modulation is observed ahead of both ocular and upper limb movements. However, theoretical accounts of these effects, and also the empirical data, are often contradictory. Accounts of “active touch”, and the premotor theory of attention, have emphasized how movement intention leads to enhanced perceptual processing at the target of a movement, or on the to-be-moved effector. By contrast, recent theories of motor control emphasize how internal “forward” model (FM) estimates may be used to cancel or attenuate sensory signals that arise as a result of self-generated movements. We used behavioural and functional brain imaging (functional magnetic resonance imaging, fMRI) to investigate how perception of a somatosensory stimulus differed according to whether it was delivered to a hand that was about to execute a reaching movement or the alternative, nonmoving, hand. The results of our study demonstrate that a somatosensory stimulus delivered to a hand that is being prepared for movement is perceived to have occurred later than when that same stimulus is delivered to a nonmoving hand. This result indicates that it takes longer for a tactile stimulus to be detected when it is delivered to a moving limb and may correspond to a change in perceptual threshold. Our behavioural results are paralleled by the results of our fMRI study that demonstrated that there were significantly reduced blood-oxygen-level-dependent (BOLD) responses within the parietal operculum and insula following somatosensory stimulation of the hand being prepared for movement, compared to when an identical stimulus was delivered to a nonmoving hand. These findings are consistent with the prediction of FM accounts of motor control that postulate that central sensory suppression of somatosensation accompanies self-generated limb movements, and with previous reports indicating that effects of sensory suppression are observed in higher order somatosensory regions.  相似文献   

9.
The intention to execute a movement can modulate our perception of sensory events, and this modulation is observed ahead of both ocular and upper limb movements. However, theoretical accounts of these effects, and also the empirical data, are often contradictory. Accounts of "active touch", and the premotor theory of attention, have emphasized how movement intention leads to enhanced perceptual processing at the target of a movement, or on the to-be-moved effector. By contrast, recent theories of motor control emphasize how internal "forward" model (FM) estimates may be used to cancel or attenuate sensory signals that arise as a result of self-generated movements. We used behavioural and functional brain imaging (functional magnetic resonance imaging, fMRI) to investigate how perception of a somatosensory stimulus differed according to whether it was delivered to a hand that was about to execute a reaching movement or the alternative, nonmoving, hand. The results of our study demonstrate that a somatosensory stimulus delivered to a hand that is being prepared for movement is perceived to have occurred later than when that same stimulus is delivered to a nonmoving hand. This result indicates that it takes longer for a tactile stimulus to be detected when it is delivered to a moving limb and may correspond to a change in perceptual threshold. Our behavioural results are paralleled by the results of our fMRI study that demonstrated that there were significantly reduced blood-oxygen-level-dependent (BOLD) responses within the parietal operculum and insula following somatosensory stimulation of the hand being prepared for movement, compared to when an identical stimulus was delivered to a nonmoving hand. These findings are consistent with the prediction of FM accounts of motor control that postulate that central sensory suppression of somatosensation accompanies self-generated limb movements, and with previous reports indicating that effects of sensory suppression are observed in higher order somatosensory regions.  相似文献   

10.
We investigated how motor agency in the voluntary control of body movement influences body awareness. In the Rubber Hand Illusion (RHI), synchronous tactile stimulation of a rubber hand and the participant's hand leads to a feeling of the rubber hand being incorporated in the participant's own body. One quantifiable behavioural correlate of the illusion is an induced shift in the perceived location of the participant's hand towards the rubber hand. Previous studies showed that the induced changes in body awareness are local and fragmented: the proprioceptive drift is largely restricted to the stimulated finger. In the present study, we investigated whether active and passive movements, rather than tactile stimulation, would lead to similarly fragmented body awareness. Participants watched a projected image of their hand under three conditions: active finger movement, passive finger movement, and tactile stimulation. Visual feedback was either synchronous or asynchronous with respect to stimulation of the hand. A significant overall RHI, defined as greater drifts following synchronous than asynchronous stimulation, was found in all cases. However, the distribution of the RHI across stimulated and non-stimulated fingers depended on the kind of stimulation. Localised proprioceptive drifts, specific to the stimulated finger, were found for tactile and passive stimulation. Conversely, during active movement of a single digit, the proprioceptive drifts were not localised to that digit, but were spread across the whole hand. Whereas a purely proprioceptive sense of body-ownership is local and fragmented, the motor sense of agency integrates distinct body-parts into a coherent, unified awareness of the body.  相似文献   

11.
Tactile perception is often impaired during movement. The present study investigated whether such sensory suppression also occurs during back movements, and whether this would be modulated by attention. In two tactile detection experiments, participants simultaneously engaged in a movement task, in which they executed a back-bending movement, and a perceptual task, consisting of the detection of subtle tactile stimuli administered to their upper or lower back. The focus of participants’ attention was manipulated by raising the probability that one of the back locations would be stimulated. The results revealed that tactile detection was suppressed during the execution of the back movements. Furthermore, the results of Experiment 2 revealed that when the stimulus was always presented to the attended location, tactile suppression was substantially reduced, suggesting that sensory suppression can be modulated by top-down attentional processes. The potential of this paradigm for studying tactile information processing in clinical populations is discussed.  相似文献   

12.
This study investigated the influence of attentional and motor demands on motor overflow in 17 healthy young (18-35 years) and 17 older adults (60-80 years). Participants performed a finger pressing task by exerting either 33% or 66% of their maximal force output using their dominant or nondominant hand. Overflow was concurrently recorded in the passive hand. Attention was manipulated via a tactile stimulus presented to one or both hands for certain trials. Results showed that older adults exhibited greater overflow than young adults and that the effect of target force was exacerbated in older adults. Further, only older adult overflow was increased when tactile stimulation was directed to one or both hands. Increased overflow in older adults may result from bilateral cortical activation that is influenced by increased task demands. To perform comparatively to younger adults, older adults may compensate for age-related brain changes by recruiting an increased cortical network.  相似文献   

13.
This study investigated the influence of attentional and motor demands on motor overflow in 17 healthy young (18–35 years) and 17 older adults (60–80 years). Participants performed a finger pressing task by exerting either 33% or 66% of their maximal force output using their dominant or nondominant hand. Overflow was concurrently recorded in the passive hand. Attention was manipulated via a tactile stimulus presented to one or both hands for certain trials. Results showed that older adults exhibited greater overflow than young adults and that the effect of target force was exacerbated in older adults. Further, only older adult overflow was increased when tactile stimulation was directed to one or both hands. Increased overflow in older adults may result from bilateral cortical activation that is influenced by increased task demands. To perform comparatively to younger adults, older adults may compensate for age-related brain changes by recruiting an increased cortical network.  相似文献   

14.
Previous studies of tactile spatial perception focussed either on a single point of stimulation, on local patterns within a single skin region such as the fingertip, on tactile motion, or on active touch. It remains unclear whether we should speak of a tactile field, analogous to the visual field, and supporting spatial relations between stimulus locations. Here we investigate this question by studying perception of large-scale tactile spatial patterns on the hand, arm and back. Experiment 1 investigated the relation between perception of tactile patterns and the identification of subsets of those patterns. The results suggest that perception of tactile spatial patterns is based on representing the spatial relations between locations of individual stimuli. Experiment 2 investigated the spatial and temporal organising principles underlying these relations. Experiment 3 showed that tactile pattern perception makes reference to structural representations of the body, such as body parts separated by joints. Experiment 4 found that precision of pattern perception is poorer for tactile patterns that extend across the midline, compared to unilateral patterns. Overall, the results suggest that the human sense of touch involves a tactile field, analogous to the visual field. The tactile field supports computation of spatial relations between individual stimulus locations, and thus underlies tactile pattern perception.  相似文献   

15.
Attention and executive functions were investigated in medicated and unmedicated children with ADHD combined type using a novel selective reaching task. This task involved responding as rapidly as possible to a target while at times having to ignore a distractor. Results indicated that unmedicated children with ADHD showed slow and inaccurate responding. Slow responding reflected problems at the stage of movement preparation but not movement execution. An attentional impairment, rather than a motor planning problem per se, appeared to underlie the slow movement preparation. Inaccurate responding reflected problems with response inhibition and selective attention, impulsivity, set-shifting, and difficulties in maintaining vigilance. Although medicated children with ADHD did not show slow movement preparation, they did show some response inaccuracy, resulting especially from impulsive responding.These findings suggest that ADHD is characterized by slow motor preparation (but not motor execution), and deficits in selective attention, vigilance, and executive functions. Preliminary results suggest that stimulant medication may resolve some of these motor, attentional and executive function deficits.  相似文献   

16.
Change blindness, the surprising inability of people to detect significant changes between consecutively-presented visual displays, has recently been shown to affect tactile perception as well. Visual change blindness has been observed during saccades and eye blinks, conditions under which people’s awareness of visual information is temporarily suppressed. In the present study, we demonstrate change blindness for suprathreshold tactile stimuli resulting from the execution of a secondary task requiring bodily movement. In Experiment 1, the ability of participants to detect changes between two sequentially-presented vibrotactile patterns delivered on their arms and legs was compared while they performed a secondary task consisting of either the execution of a movement with the right arm toward a visual target or the verbal identification of the target side. The results demonstrated that a motor response gave rise to the largest drop in perceptual sensitivity (as measured by changes in d′) in detecting changes to the tactile display. In Experiment 2, we replicated these results under conditions in which the participants had to detect tactile changes while turning a steering wheel instead. These findings are discussed in terms of the role played by bodily movements, sensory suppression, and higher order information processing in modulating people’s awareness of tactile information across the body surface.  相似文献   

17.
Attention and executive functions were investigated in medicated and unmedicated children with ADHD combined type using a novel selective reaching task. This task involved responding as rapidly as possible to a target while at times having to ignore a distractor. Results indicated that unmedicated children with ADHD showed slow and inaccurate responding. Slow responding reflected problems at the stage of movement preparation but not movement execution. An attentional impairment, rather than a motor planning problem per se, appeared to underlie the slow movement preparation. Inaccurate responding reflected problems with response inhibition and selective attention, impulsivity, set-shifting, and difficulties in maintaining vigilance. Although medicated children with ADHD did not show slow movement preparation, they did show some response inaccuracy, resulting especially from impulsive responding.These findings suggest that ADHD is characterized by slow motor preparation (but not motor execution), and deficits in selective attention, vigilance, and executive functions. Preliminary results suggest that stimulant medication may resolve some of these motor, attentional and executive function deficits.  相似文献   

18.
In this experiment we test whether the effects of manual asymmetries on movement preparation depend on the parameter (amplitude or direction) to be programmed. In two experiments, only the amplitude, or the direction, of aiming movements was constrained. Reaction and movement times were measured. Results show that RTs are always shorter for left-hand than for right-hand movements. There is an effect of target extent in the amplitude condition, but not in the direction one. RTs for ipsilateral movements are shorter than RTs for contralateral movements. These results are discussed in the light of the processes involved in setting the amplitude or direction of the movement and with regard to the competency of the two hemispheres regarding these processes.  相似文献   

19.
Previous research suggested that perception of spatial location is biased towards spatial goals of planned hand movements. In the present study I show that an analogous perceptual distortion can be observed if attention is paid to a spatial location in the absence of planning a hand movement. Participants judged the position of a target during preparation of a mouse movement, the end point of which could deviate from the target by a varying degree in Exp. 1. Judgments of target position were systematically affected by movement characteristics consistent with perceptual assimilation between the target and the planned movement goal. This effect was neither due to an impact of motor execution on judgments (Exp. 2) nor due to characteristics of the movement cues or of certain target positions (Exp. 3, Exp. 5A). When the task included deployment of attention to spatial positions (former movement goals) in preparation for a secondary perceptual task, an effect emerged that was comparable with the bias associated with movement planning (Exp. 4, Exp. 5B). These results indicate that visual distortions accompanying manipulations of variables related to action could be mediated by attentional mechanisms.  相似文献   

20.
The influence of action perception on action execution has been demonstrated by studies of motor contagion in which the observation of an action interferes with the concurrent execution of a different action. The current study extends prior work on the extent of motor contagion in early childhood, a period of development when the effects of action observation on action execution may be particularly salient. During a classroom story reading, children (mean age 4.8 years) were familiarized with two different-colored bears, one of which was used as a seemingly animate hand puppet while the other bear remained lifeless and inanimate. Children then completed a task in which they were instructed to move a stylus on a graphics tablet in the presence of background videos of each bear making horizontal arm movements which had biological (human-moved) or non-biological (machine-moved) origins. Motor contagion was assessed as the variability of stylus movements in the horizontal axis when children were instructed to produce vertical stylus movements. Significant levels of motor contagion were seen when children observed the previously animate bear in the non-biological motion condition and when they observed the previously inanimate bear in the biological motion condition. For future studies of social perception, this finding points to the potential importance of examining mismatches between prior experience with (or knowledge about) a particular agent and the subsequent behavior of that agent in a different context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号