首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examined the association between plantar flexion torque variability during isolated isometric contractions and during quiet bipedal standing. For plantar flexion torque measurements in quiet stance (QS), subjects stood still over a force plate. The mean plantar flexion torque level exerted by each subject in QS (divided by 2 to give the torque due to a single leg) served as the target torque level for right leg force-matching tasks in extended knee (KE) and flexed knee (KF) conditions. Muscle activation levels (EMG amplitudes) of the triceps surae and mean, standard deviation and coefficient of variation of plantar flexion torque were computed from signals acquired during periods with and without visual feedback. No significant correlations were found between EMG amplitudes and torque variability, regardless of the condition and muscle being analyzed. A significant correlation was found between torque variability in QS and KE, whereas no significant correlation was found between torque variability in QS and KF, regardless of vision availability. Therefore, torque variability measured in a controlled extended knee plantar flexion contraction is a predictor of torque variability in the anterior-posterior direction when the subjects are in quiet standing. In other words, larger plantar flexion torque variability in KE (but not in KF) implies less stable balance. The mechanisms underlying the findings above are probably associated with the similar proprioceptive feedback from the triceps surae in QS and KE and poorer proprioceptive feedback from the triceps surae in KF due to the slackening of the gastrocnemii. An additional putative mechanism includes the different torque contributions of each component of the triceps surae in the two knee angles. From a clinical and research standpoint, it would be advantageous to be able to estimate changes in balance ability by means of simple measurements of torque variability in a force matching task.  相似文献   

2.
Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo “long-term” (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of “short-term” (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (∼50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention.  相似文献   

3.
This paper reports the results of a model-based analysis of movements gathered in a 4 × 4 experimental design of speed/accuracy tradeoffs with variable target distances and width. Our study was performed on a large (120 participants) and varied sample (both genders, wide age range, various health conditions). The delta-lognormal equation was used for data modeling to investigate the interaction between the output of the agonist and the antagonist neuromuscular systems. Empirical observations show that the subjects must correlate more tightly the impulse commands sent to both neuromuscular systems in order to achieve good performances as the difficulty of the task increases whereas the correlation in the timing of the neuromuscular action co-varies with the size of the geometrical properties of the task. These new phenomena are discussed under the paradigm provided by the Kinematic Theory and new research hypotheses are proposed for further investigation of the speed/accuracy tradeoffs.  相似文献   

4.
The functions of the medial longitudinal arch have been the focus of much research in recent years. Several studies have shown kinematic differences between high- and low-arched runners. No literature currently compares the inter-segmental foot motion of high- and low-arched recreational athletes. The purpose of this study was to examine inter-segmental foot motion in the frontal plane during dynamic loading activities in high- and low-arched female athletes. Inter-segmental foot motions were examined in 10 high- and 10 low-arched female recreational athletes. Subjects performed five barefooted trials in each of the following randomized movements: walking, running, downward stepping and landing. Three-dimensional kinematic data were recorded. High-arched athletes had smaller peak ankle eversion angles in walking, running and downward stepping than low-arched athletes. At the rear-midfoot joint high-arched athletes reached peak eversion later in walking and downward stepping than the low-arched athletes. The high-arched athletes had smaller peak mid-forefoot eversion angles in walking, running and downward stepping than the low-arched athletes. The current findings show that differences in foot kinematics between the high- and low-arched athletes were in position and not range of motion within the foot.  相似文献   

5.
In this study it was investigated how primary school children perform a graphomotor task which required them to simultaneously achieve multiple movement goals. Thirty-four 1st-grade primary school children were asked to produce with an electronic ink pen loop patterns varying in height (3, 6, 9 and 12 mm) on preprinted sheets of paper attached to a digitizer tablet. The task was paced by means of an acoustic signal of either 1, 2 or 3 Hz. The children were instructed to attain both the imposed amplitude and frequency. By focusing on how local parameter errors changed from one movement to the next, exploitation of biomechanics when the children respected the inverse relationship between movement amplitude and frequency was distinguished from deliberate, cognitive control when the children succeeded in overriding the inverse relationship between movement amplitude and frequency. The results show that children, like adults, exploit biomechanics to a considerable extent. Coupling strength between the acoustic pacing signal and the pen-tip movements increased with age, whereas the temporal errors decreased. The study shows that preparatory writers can pursue multiple movement goals simultaneously at lower speeds but at higher speeds their capacity to do so is reduced.  相似文献   

6.
A large body of data supports the view that movement plays a crucial role in letter representation and suggests that handwriting contributes to the visual recognition of letters. If so, changing the motor conditions while children are learning to write by using a method based on typing instead of handwriting should affect their subsequent letter recognition performances. In order to test this hypothesis, we trained two groups of 38 children (aged 3-5 years) to copy letters of the alphabet either by hand or by typing them. After three weeks of learning, we ran two recognition tests, one week apart, to compare the letter recognition performances of the two groups. The results showed that in the older children, the handwriting training gave rise to a better letter recognition than the typing training.  相似文献   

7.
Previous research showed that handwriting production is mediated by linguistically oriented processing units such as syllables and graphemes. The goal of this study was to investigate whether French adults also activate another kind of unit that is more related to semantics than phonology, namely morphemes. Experiment 1 revealed that letter duration and inter-letter intervals were longer for suffixed words than for pseudo-suffixed words. These results suggest that the handwriting production system chunks the letter components of the root and suffix into morpheme-sized units. Experiment 2 compared the production of prefixed and pseudo-prefixed words. The results did not yield significant differences. This asymmetry between suffix and prefix processing has also been observed in other linguistic tasks. In suffixed words, the suffix would be processed on-line during the production of the root, in an analytic fashion. Prefixed words, in contrast, seem to be processed without decomposition, as pseudo-affixed words.  相似文献   

8.
Smolensky MH 《CNS spectrums》2001,6(6):467-74, 479-82
Circadian (24-hour) rhythms are important to the practice of medicine. The phasing and amplitude of key physiologic and biochemical circadian rhythms contribute to predictable-in-time patterns in the manifestation and exacerbation of most medical conditions. Moreover, body rhythms can significantly affect responses of patients to diagnostic tests and medications. Rhythmicity in the pathophysiology of medical conditions is the rationale for chronotherapeutics--the purposeful variance of the concentration of medicines in synchrony with biological rhythm--determinants of disease activity--to optimize treatment outcomes. This article discusses the concept of biological time structure and its relevance to the practice of medicine, with a focus on neurologic issues.  相似文献   

9.
Procedural learning benefits from memory processes occurring outside practice resulting in offline learning. Offline gains have been demonstrated almost exclusively for the ordinal structure of sequential motor tasks. Many skills also demand that the correct serial order of events be appropriately timed. Evidence indicates that the temporal aspect of a procedural skill can be encoded independent of serial order knowledge and governed by at least two distinct neural circuits. The present experiment determined if (a) offline gains emerge for temporal learning, and (b) if such gains occur for timing supervised by distinct timing systems. Participants experienced 216 practice trials of a 7-key press sequence that involved integer- or non-integer timing rhythms. Twenty-four hours after training 30 test trials were administered. Results revealed robust offline enhancement for timing performance of the non-integer based temporal sequences. This improvement was localized to stabilization of the required relative but not absolute time profiles. The neural circuitry central to supporting the performance of non-integer timing sequences is also a principal constituent of what is described as the "cognitive" timing system. Timing governed by this system appears most susceptible to offline gains via consolidation.  相似文献   

10.
This study investigated the EMG characteristics and the kinematics of the trunk and lower extremity during the sit-to-stand (STS) task while wearing 1-, 4-, and 8-cm high-heeled shoes. We examined differences in the EMG data of the internal oblique, erector spinae, medial hamstring, and rectus femoris muscles during the STS task. The motion of the hip joint during an STS task was measured with a NorAngle Electrogoniometer System. Twelve young healthy women were recruited to this study. EMG characteristics and the hip joint angle were recorded during the performance of an STS task by subjects wearing high-heeled shoes of three different heel heights. The muscle onset time and EMG activity during this task were analyzed. In 8-cm high-heeled shoes, the onset time for the erector spinae muscle was significantly delayed, and the onset latency for the medial hamstring and the rectus femoris was significantly decreased. There was increased activity in the erector spinae and rectus femoris muscle during this task when wearing 8-cm high-heeled shoes. The initial hip flexion angle at the start point of the STS task did not differ among the 1-, 4-, and 8-cm heel-height conditions, but the trunk flexion angle, corresponding to the displacement between the peak hip flexion and initial hip flexion, was significantly larger in the 8-cm heel-height condition than in the 1- and 4-cm heel-height conditions. The findings suggest that excessive heel height has the potential to induce muscle imbalance during the STS task.  相似文献   

11.
Aim of this study was to provide a non-invasive assessment of the dynamic properties of the ankle joint during human locomotion, with specific focus on the effects of gender and age. Accordingly, flexion-extension angles and moments, obtained through gait analysis, were used to generate moment–angle loops at the ankle joint in 120 healthy subjects walking at a same normalized speed. Four reproducible types of loops were identified: Typical Loops, Narrow, Large and Yielding loops. No significant changes in the slopes of the main loop phases were observed as a function of gender and age, with the exception of a relative increase in the slope of the descending phase in elderly males compared to adult females. As for the ergometric parameters, the peak ankle moment, work produced and net work along the cycle were slightly, but significantly affected, with progressively decrease in the following order: Adult Males, Adult Females, Elderly Males and Elderly Females. The evidence that only few of the quantitative aspects of moment–angle loops were affected suggests that the control strategy which regulates the biomechanical properties of the ankle joint during walking is rather robust and qualitatively consistent across genders and age.  相似文献   

12.
Difficulties with chronopsychology studies include a masking effect of variables, the combination of different rhythms and variations of strategies. An experiment is conducted to analyze the role of circadian variations of elementary processes in the variations of performance for a complex task. Twenty-four subjects solved anagrams and tried to find the rule of anagram construction, during two sessions, at 10 am and 5 pm. Responses were classified in three groups: (a) discovery of the anagram construction rule (R2 responses); (b) resolution of anagram without discovery of rule (R1 responses); (c) failure, no resolution of anagram (R0 responses). During the second session, R2 performances were better at 10 am than at 5 pm. In contrast, R1 performances were better at 5 pm than at 10 am. Rule application was faster at 10 am than at 5 pm. Results are discussed in terms of variations of short-term memory capacity (Folkard and Monk, 1980). Using chronopsychology to analyze the role of elementary processes in a complex task is discussed.  相似文献   

13.
This study examined muscular activity patterns of extensor and flexor muscles and variability of forces during static and dynamic tracking tasks using compensatory and pursuit display. Fourteen volunteers performed isometric actions in two conditions: (i) a static tracking task consisting of flexion/pronation, ulnar deviation, extension/supination and radial deviation of the wrist at 20% maximum voluntary contraction (MVC), and (ii) a dynamic tracking task aiming at following a moving target at 20% MVC in the four directions of contraction. Surface electromyography (SEMG) from extensor carpi ulnaris, extensor carpi radialis, flexor carpi ulnaris and flexor digitorum superficialis muscles and exerted forces in the transverse and sagittal plane were recorded. Normalized root mean square and mutual information (index of functional connectivity within muscles) of SEMGs and the standard deviation and sample entropy of force signals were extracted. Larger SEMG amplitudes were found for the dynamic task (p < .05), while normalized mutual information between muscle pairs was larger for the static task (p < .05). Larger size of variability (standard deviation of force) concomitant with smaller sample entropy was observed for the dynamic task compared with the static task (p < .01 for both). These findings underline a rescaling of the muscles’ respective contribution influencing force variability relying on feedback and feed-forward control strategies in relation to display modes during static and dynamic tracking tasks.  相似文献   

14.
15.
Two experiments used a digitizing tablet to analyse the temporal, spatial, and kinematic characteristics of handwritten production of arabic numbers. They addressed a specific issue of the numerical domain: Does the lexical and syntactic structure of verbal numerals influence the production of arabic numerals (Experiments 1 and 2), even after enforced semantic processing in a comparison task (Experiment 2)? Subjects had to write multi-digit arabic numerals (e.g., 1200) presented in two different verbal structures: a multiplicative one (e.g., teen-hundred, douze cents (twelve hundred)) or an additive one (e.g., thousand-unit-hundred, mille deux cents (one thousand two hundred)). Results show differences in the inter-digit jumps that reflect the influence of the structure of verbal numerals, even after the semantic task. This finding is discussed with regard to different models of number transcoding (McCloskey, Caramazza, & Basili, 1985; Power & Dal Martello, 1990, 1997).  相似文献   

16.
17.
The effects of handedness on bimanual isofrequency coordination (e.g., phase advance of the dominant limb) have been suggested to result from an asymmetry in interlimb coupling strength, with the non-dominant limb being more strongly influenced by the dominant limb than vice versa. A formalized version of this hypothesis was tested by examining the phase adjustments in both limbs in response to mechanical perturbation of the bimanual coordination pattern and during frequency-induced phase transitions, for both right- and left-handed participants. In both situations, the phase adaptations were made predominantly by the non-dominant limb in right-handers, whereas this effect failed to reach significance in left-handers. Thus, the asymmetry in coupling strength was less pronounced in the latter group. In addition, the degree of asymmetry depended on movement frequency. The observed asymmetry was discussed in relation to pertinent neurophysiological findings.  相似文献   

18.
Manifestations of learned skills and knowledge are known to be context-dependent. However, a study of perceptual-motor learning [Tagliabue, M., Zorzi, M., & Umiltà, C. (2002). Cross-modal re-mapping influences the Simon effect. Memory and Cognition, 30, 18-23] reported context-independent transfer of a learned stimulus-response (S-R) mapping to a task in which the mapping is no longer relevant. Although similar results were observed in subsequent studies, these studies also provided an indication that the transfer is context-dependent. The present study investigated the issue of context-dependence of the transfer of a learned S-R mapping. In experiment 1, groups of participants performed choice-reaction tasks with either the same or different response modes (keypresses or joystick movements) in the practice and transfer sessions. Smaller transfer effects were observed for those who switched response mode in the transfer session than for those who did not, indicating that transfer of the learned mapping is context-dependent. However, transfer also occurred for the former group, indicating that the transfer effect is dependent on both general and specific response components. In experiment 2, the same task conditions were examined, but with action effects consistent across the practice and transfer sessions, which were assumed to introduce a contextual feature that was common to the two sessions. The influence of action effects on transfer depended on the practiced response. The results are discussed in terms of feature overlap between the learning and test contexts, and an association network model of learning and response selection.  相似文献   

19.
The purpose of this study was to determine the mediating role of physical activity and perceived adequacy towards physical activity on peak aerobic power (VO2peak) in children with developmental coordination disorder. This case-control study involved 61 male and female subjects age 12-13 years with motor impairments and 61 healthy controls matched for age, gender and school location. Subjects were assessed for motor proficiency and classified as probable developmental coordination disorder (p-DCD) or healthy control using the Movement Assessment Battery for Children, 2nd Edition. VO2peak was assessed by a progressive exercise test on a cycle ergometer. Perceived adequacy towards physical activity was estimated using the Children’s Self-perception of Adequacy and Predilection for Physical Activity scale. Physical activity was monitored for seven days using accelerometry. Children with p-DCD had significantly lower VO2peak adjusted for lean mass (48.8 ± 7.2 ml/kg LM/min; p ? 0.05) compared to controls (53.1 ± 8.2 ml/kg LM/min). Regression analysis demonstrated that perceived adequacy and physical activity were significant mediators in the relationship between p-DCD and VO2peak (R-squared = 24.3%). In conclusion, using a stringent laboratory assessment, the current study verifies earlier non laboratory findings, adding low aerobic power, the most important component of cardiorespiratory fitness, to the list of health consequences associated with developmental coordination disorder.  相似文献   

20.
Falls are common in older adults. The most common cause of falls is tripping while walking. Simulation studies demonstrated that older adults may be restricted by lower limb strength and movement speed to regain balance after a trip. This review examines how modeling approaches can be used to determine how different measures predict actual fall risk and what some of the causal mechanisms of fall risk are. Although increased gait variability predicts increased fall risk experimentally, it is not clear which variability measures could best be used, or what magnitude of change corresponded with increased fall risk. With a simulation study we showed that the increase in fall risk with a certain increase in gait variability was greatly influenced by the initial level of variability. Gait variability can therefore not easily be used to predict fall risk. We therefore explored other measures that may be related to fall risk and investigated the relationship between stability measures such as Floquet multipliers and local divergence exponents and actual fall risk in a dynamic walking model. We demonstrated that short-term local divergence exponents were a good early predictor for fall risk. Neuronal noise increases with age. It has however not been fully understood if increased neuronal noise would cause an increased fall risk. With our dynamic walking model we showed that increased neuronal noise caused increased fall risk. Although people who are at increased risk of falling reduce their walking speed it had been questioned whether this slower speed would actually cause a reduced fall risk. With our model we demonstrated that a reduced walking speed caused a reduction in fall risk. This may be due to the decreased kinematic variability as a result of the reduced signal-dependent noise of the smaller muscle forces that are required for slower. These insights may be used in the development of fall prevention programs in order to better identify those at increased risk of falling and to target those factors that influence fall risk most.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号