首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a series of four experiments, we evaluated observers' abilities to perceive and discriminate ordinal depth relationships between separated local surface regions for objects depicted by static, deforming, and disparate boundary contours or silhouettes. Comparisons were also made between judgments made for silhouettes and for objects defined by surface texture, which permits judgment based on conventional static texture gradients, conventional stereopsis, and conventional structure-from-motion. In all the experiments, the observers were able to detect, with relatively high precision, ordinal depth relationships, an aspect of local three-dimensional (3-D) structure, from boundary contours or silhouettes. The results of the experiments clearly demonstrate that the static, disparate, and deforming boundary contours of solid objects are perceptually important optical sources of information about 3-D shape. Other factors that were found to affect performance were the amount of separation between the local surface regions, the proximity or closeness of the regions to the boundary contour itself, and for the conditions with deforming contours, the overall magnitude of the boundary deformation.  相似文献   

2.
A single experiment investigated how younger (aged 18-32 years) and older (aged 62-82 years) observers perceive 3D object shape from deforming and static boundary contours. On any given trial, observers were shown two smoothly-curved objects, similar to water-smoothed granite rocks, and were required to judge whether they possessed the "same" or "different" shape. The objects presented during the "different" trials produced differently-shaped boundary contours. The objects presented during the "same" trials also produced different boundary contours, because one of the objects was always rotated in depth relative to the other by 5, 25, or 45 degrees. Each observer participated in 12 experimental conditions formed by the combination of 2 motion types (deforming vs. static boundary contours), 2 surface types (objects depicted as silhouettes or with texture and Lambertian shading), and 3 angular offsets (5, 25, and 45 degrees). When there was no motion (static silhouettes or stationary objects presented with shading and texture), the older observers performed as well as the younger observers. In the moving object conditions with shading and texture, the older observers' performance was facilitated by the motion, but the amount of this facilitation was reduced relative to that exhibited by the younger observers. In contrast, the older observers obtained no benefit in performance at all from the deforming (i.e., moving) silhouettes. The reduced ability of older observers to perceive 3D shape from motion is probably due to a low-level deterioration in the ability to detect and discriminate motion itself.  相似文献   

3.
Four experiments were conducted to examine the integration of depth information from binocular stereopsis and structure from motion (SFM), using stereograms simulating transparent cylindrical objects. We found that the judged depth increased when either rotational or translational motion was added to a display, but the increase was greater for rotating (SFM) displays. Judged depth decreased as texture element density increased for static and translating stereo displays, but it stayed relatively constant for rotating displays. This result indicates that SFM may facilitate stereo processing by helping to resolve the stereo correspondence problem. Overall, the results from these experiments provide evidence for a cooperative relationship between. SFM and binocular disparity in the recovery of 3-D relationships from 2-D images. These findings indicate that the processing of depth information from SFM and binocular disparity is not strictly modular, and thus theories of combining visual information that assume strong modularity-or-independence cannot accurately characterize all instances of depth perception from multiple sources.  相似文献   

4.
In this paper, we analyze and test three theories of 3-D shape perception: (1) Helmholtzian theory, which assumes that perception of the shape of an object involves reconstructing Euclidean structure of the object (up to size scaling) from the object’s retinal image after taking into account the object’s orientation relative to the observer, (2) Gibsonian theory, which assumes that shape perception involves invariants (projective or affine) computed directly from the object’s retinal image, and (3) perspective invariants theory, which assumes that shape perception involves a new kind of invariants of perspective transformation. Predictions of these three theories were tested in four experiments. In the first experiment, we showed that reliable discrimination between a perspective and nonperspective image of a random polygon is possible even when information only about the contour of the image is present. In the second experiment, we showed that discrimination performance did not benefit from the presence of a textured surface, providing information about the 3-D orientation of the polygon, and that the subjects could not reliably discriminate between the 3-D orientation of the textured surface and that of a shape. In the third experiment, we compared discrimination for solid shapes that either had flat contours (cuboids) or did not have visible flat contours (cylinders). The discrimination was very reliable in the case of cuboids but not in the case of cylinders. In the fourth experiment, we tested the effectiveness of planar motion in perception of distances and showed that the discrimination threshold was large and similar to thresholds when other cues to 3-D orientation were used. All these results support perspective invariants as a model of 3-D shape perception.  相似文献   

5.
We examined the ability of human observers to discriminate between different 3-D quadratic surfaces defined by motion, and with head position fed back to the stimulus to provide an up-to-date dynamical perspective view. We tested whether 3-D shape or 3-D curvature would affect discrimination performance. It appeared that discrimination of 3-D quadratic shape clearly depended on shape but not on the amount of curvature. Even when the amount of curvature was randomized, subjects’ performance was not altered. On the other hand, the discrimination of 3-D curvature clearly depended linearly on curvature with Weber fractions of 20% on the average and, to a small degree, on 3-D shape. The experiment shows that observers can easily separate 3-D shape and 3-D curvature, and that Koenderink’s shape index and curvedness provide a convenient way to specify shape. These results warn us against using just any arbitrary 3-D shape in 3-D shape perception tasks and indicate, for example, that emphasizing 3-D shape in computer displays by exaggerating curvature does not have any effect.  相似文献   

6.
Two experiments were conducted to evaluate the ability of younger and older adults to recognize 3-D object shape from patterns of optical motion. In Experiment 1, participants were required to identify dotted surfaces that rotated in depth (i.e., surface structure portrayed using the kinetic depth effect). The task difficulty was manipulated by limiting the surface point lifetimes within the stimulus apparent motion sequences. In Experiment 2, the participants identified solid, naturally shaped objects (replicas of bell peppers, Capsicum annuum) that were defined by occlusion boundary contours, patterns of specular highlights, or combined optical patterns containing both boundary contours and specular highlights. Significant and adverse effects of increased age were found in both experiments. Despite the fact that previous research has found that increases in age do not reduce solid shape discrimination, our current results indicated that the same conclusion does not hold for shape identification. We demonstrated that aging results in a reduction in the ability to visually recognize 3-D shape independent of how the 3-D structure is defined (motions of isolated points, deformations of smooth optical fields containing specular highlights, etc.).  相似文献   

7.
In a natural environment, cast shadows abound. Objects cast shadows both upon themselves and upon background surfaces. Previous research on the perception of 3-D shape from cast shadows has only examined the informativeness of shadows cast upon flat background surfaces. In outdoor environments, however, background surfaces often possess significant curvature (large rocks, trees, hills, etc.), and this background curvature distorts the shape of cast shadows. The purpose of this study was to determine the extent to which observers can “discount” the distorting effects of curved background surfaces. In our experiments, observers viewed deforming or static shadows of naturally shaped objects, which were cast upon flat and curved background surfaces. The results showed that the discrimination of 3-D object shape from cast shadows was generally invariant over the distortions produced by hemispherical background surfaces. The observers often had difficulty, however, in identifying the shadows cast onto saddle-shaped background surfaces. The variations in curvature which occur in different directions on saddle-shaped background surfaces cause shadow distortions that lead to difficulties in object recognition and discrimination.  相似文献   

8.
The ability of younger and older observers to perceive 3-D shape and depth from motion parallax was investigated. In Experiment 1, the observers discriminated among differently curved 3-dimensional (3-D) surfaces in the presence of noise. In Experiment 2, the surfaces' shape was held constant and the amount of front-to-back depth was varied; the observers estimated the amount of depth they perceived. The effects of age were strongly task dependent. The younger observers' performance in Experiment 1 was almost 60% higher than that of the older observers. In contrast, no age effect was obtained in Experiment 2. Older observers can effectively perceive variations in depth from patterns of motion parallax, but their ability to discriminate 3-D shape is significantly compromised.  相似文献   

9.
Norman JF  Dawson TE  Raines SR 《Perception》2000,29(2):135-148
In this study of the informativeness of shadows for the perception of object shape, observers viewed shadows cast by a set of natural solid objects and were required to discriminate between them. In some conditions the objects underwent rotation in depth while in other conditions they remained stationary, thus producing both deforming and static shadows. The orientation of the light source casting the shadows was also varied, leading to further alterations in the shape of the shadows. When deformations in the shadow boundary were present, the observers were able to reliably recognize and discriminate between the objects, invariant over the shadow distortions produced by movements of the light source. The recognition performance for the static shadows depended critically upon the content of the specific views that were shown. These results support the idea that there are invariant features of shadow boundaries that permit the recognition of shape (cf Koenderink, 1984 Perception 13 321-330).  相似文献   

10.
Two experiments evaluated the ability of younger and older adults to visually discriminate 3-D shape as a function of surface coherence. The coherence was manipulated by embedding the 3-D surfaces in volumetric noise (e.g., for a 55?% coherent surface, 55?% of the stimulus points fell on a 3-D surface, while 45?% of the points occupied random locations within the same volume of space). The 3-D surfaces were defined by static binocular disparity, dynamic binocular disparity, and motion. The results of both experiments demonstrated significant effects of age: Older adults required more coherence (tolerated volumetric noise less) for reliable shape discrimination than did younger adults. Motion-defined and static-binocular-disparity-defined surfaces resulted in similar coherence thresholds. However, performance for dynamic-binocular-disparity-defined surfaces was superior (i.e., the observers?? surface coherence thresholds were lowest for these stimuli). The results of both experiments showed that younger and older adults possess considerable tolerance to the disrupting effects of volumetric noise; the observers could reliably discriminate 3-D surface shape even when 45?% of the stimulus points (or more) constituted noise.  相似文献   

11.
A single experiment evaluated observers’ ability to visually discriminate 3-D object shape, where the 3-D structure was defined by motion, texture, Lambertian shading, and occluding contours. The observers’ vision was degraded to varying degrees by blurring the experimental stimuli, using 2.0-, 2.5-, and 3.0-diopter convex lenses. The lenses reduced the observers’ acuity from ?0.091 LogMAR (in the no-blur conditions) to 0.924 LogMAR (in the conditions with the most blur; 3.0-diopter lenses). This visual degradation, although producing severe reductions in visual acuity, had only small (but significant) effects on the observers’ ability to discriminate 3-D shape. The observers’ shape discrimination performance was facilitated by the objects’ rotation in depth, regardless of the presence or absence of blur. Our results indicate that accurate global shape discrimination survives a considerable amount of retinal blur.  相似文献   

12.
13.
Shape is an important cue for recognizing an object by touch. Several features, such as edges, curvature, surface area, and aspect ratio, are associated with 3-D shape. To investigate the saliency of 3-D shape features, we developed a haptic search task. The target and distractor items consisted of shapes (cube, sphere, tetrahedron, cylinder, and ellipsoid) that differed in several of these features. Exploratory movements were left as unconstrained as possible. Our results show that this type of haptic search task can be performed very efficiently (25 msec/item) and that edges and vertices are the most salient features. Furthermore, very salient local features, such as edges, can also be perceived through enclosure, an exploratory procedure usually associated with global shape. Since the subjects had to answer as quickly as possible, this suggests that speed may be a factor in selecting the appropriate exploratory procedure.  相似文献   

14.
In two experiments, we investigated the ability of younger and older observers to perceive and discriminate 3-D shape from static and dynamic patterns of binocular disparity. In both experiments, the younger observers' discrimination accuracies were 20% higher than those of the older observers. Despite this quantitative difference, in all other respects the older observers performed similarly to the younger observers. Both age groups were similarly affected by changes in the magnitude of binocular disparity, by reductions in binocular correspondence, and by increases in the speed of stereoscopic motion. In addition, observers in both age groups exhibited an advantage in performance for dynamic stereograms when the patterns of binocular disparity contained significant amounts of correspondence "noise." The process of aging does affect stereopsis, but the effects are quantitative rather than qualitative.  相似文献   

15.
Fulvio JM  Singh M 《Acta psychologica》2006,123(1-2):20-40
Geometric and neural models of illusory-contour (IC) synthesis currently use only local contour geometry to derive the shape of ICs. Work on the visual representation of shape, by contrast, points to the importance of both contour and surface geometry. We investigated the influence of surface-based geometric factors on IC shape. The local geometry of inducing-contour pairs was equated in stereoscopic IC displays, and the shape of the enclosed surface was varied by manipulating sign of curvature, cross-axial shape width, and medial-axis geometry. IC shapes were measured using a parametric shape-adjustment task (Experiment 1) and a dot-adjustment task (Experiment 2). Both methods revealed large influences of surface geometry. ICs enclosing locally concave regions were perceived to be systematically more angular than those enclosing locally convex regions. Importantly, the influence of sign of curvature was modulated significantly by shape width and medial-axis geometry: IC shape difference between convex and concave inducers was greater for narrow shapes than wider ones, and greater for shapes with straight axis and symmetric contours (diamond versus bowtie), than those with curved axis and parallel contours (bent tubes). Even at the level of illusory "contours," there is a contribution of region-based geometry which is sensitive to nonlocal shape properties involving medial geometry and part decomposition. Models of IC synthesis must incorporate the role of nonlocal region-based geometric factors in a way that parallels their role in organizing visual shape representation more generally.  相似文献   

16.
This study compared the sensory and perceptual abilities of the blind and sighted. The 32 participants were required to perform two tasks: tactile grating orientation discrimination (to determine tactile acuity) and haptic three-dimensional (3-D) shape discrimination. The results indicated that the blind outperformed their sighted counterparts (individually matched for both age and sex) on both tactile tasks. The improvements in tactile acuity that accompanied blindness occurred for all blind groups (congenital, early, and late). However, the improvements in haptic 3-D shape discrimination only occurred for the early-onset and late-onset blindness groups; the performance of the congenitally blind was no better than that of the sighted controls. The results of the present study demonstrate that blindness does lead to an enhancement of tactile abilities, but they also suggest that early visual experience may play a role in facilitating haptic 3-D shape discrimination.  相似文献   

17.
18.
Norman JF  Dawson TE  Butler AK 《Perception》2000,29(11):1335-1359
The ability of younger and older adults to perceive the 3-D shape, depth, and curvature of smooth surfaces defined by differential motion and binocular disparity was evaluated in six experiments. The number of points defining the surfaces and their spatial and temporal correspondences were manipulated. For stereoscopic sinusoidal surfaces, the spatial frequency of the corrugations was also varied. For surfaces defined by motion, the lifetimes of the individual points in the patterns were varied, and comparisons were made between the perception of surfaces defined by points and that of more ecologically valid textured surfaces. In all experiments, the older observers were less sensitive to the depths and curvatures of the surfaces, although the deficits were much larger for motion-defined surfaces. The results demonstrate that older adults can extract depth and shape from optical patterns containing only differential motion or binocular disparity, but these abilities are often manifested at reduced levels of performance.  相似文献   

19.
Identifying contours from occlusion events   总被引:1,自引:0,他引:1  
Surface contours specified by occlusion events that varied in density, velocity, and type of motion (rotation or translation) were examined in four experiments. As a fourth experimental factor, there were both figure-motion trials (the occluding surface moved over a stationary background) and background-motion trials (the background moved behind a stationary surface) in each experiment. Displays contained line patterns and rotary motion (Experiment 1), line patterns and translatory motion (Experiment 2), textured surfaces and rotary motion (Experiment 3), and textured surfaces and translatory motion (Experiment 4). Results indicate that contour identifications are more accurate with translation than with rotation, and that background-motion trials are generally easier than figure-motion trials. Although density in all experiments affected identifications in both background- and figure-motion trials, velocity did so in Experiment 4 only. In Experiments 1, 2, and 3, velocity affected identifications in background-motion trials but not in figure-motion trials. In Experiments 3 and 4, the rate of accretion and deletion of texture was a poor predictor of identification accuracy. These results are not consistent with previous accounts of contour perception from occlusion events, and may reflect an involvement of ocular pursuit as a mechanism for registering contour information.  相似文献   

20.
Recent research suggests that there is an advantage for processing configural information in scenes and objects. The purpose of this study was to investigate the extent to which attention may account for this configural advantage. In Experiment 1, we found that cueing the location of change in single object displays improved detection performance for both configural and shape changes, yet cueing attention away from the location of change was detrimental only for shape change detection. A configural advantage was present for each cueing condition. Experiments 2A and 2B examined whether the configural advantage persisted in conditions where attention was distributed more widely, using a visual search paradigm. Although searches for configural changes were faster than those for shape changes across all set sizes, both types of information appeared to be processed with similar efficiency. Overall, these results suggest that the configural advantage is independent of the location or distribution of visual attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号