首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence collected from rodent models of memory storage suggests that rapid forms of learning engage the involvement of multiple brain regions each of which may participate in a different component of information processing. The present study used temporary inactivation of the amygdala and hippocampus during different phases of information processing on a one-trial appetitive-conditioning task to examine how these two regions might participate in the storage of appetitive memories. Male Long Evans rats were chronically implanted into the amygdala or dorsal hippocampus and food deprived. Rats were trained on a radial maze conditioned cue preference task where training occurred in one 40-min session and testing took place 24 h later. The amygdala or hippocampus was inactivated separately with muscimol (50 ng/microl) injected immediately before or after training, or immediately before testing. Saline-injected rats displayed a conditioned preference by spending more time in the arm that previously contained food than in the arm that did not contain food. Muscimol injected into the amygdala before training or testing blocked the conditioned preference. Muscimol injected into the hippocampus immediately after training blocked the conditioned preference. These results suggest that the processing of memories may require multiple contributions from separate brain systems for at least short-term (24 h) storage. The resulting output from each system may converge on a similar downstream target to influence behavior.  相似文献   

2.
Food deprived, heterogeneous strain (HS/IBG) mice were trained on two different discrimination tasks for food reinforcement. In one experiment animals were trained to make spatial discriminations in a T maze. Immediately after training they were given subcutaneous injections of either substance P (1 ng/g) or vehicle. Twenty-four hours later the animals were given reversal training in the same maze. The results showed that substance P-treated animals took significantly longer to acquire the reversal habit than did control mice. In a second experiment, animals were trained to make visual discriminations in a T maze. Immediately after reaching acquisition criterion animals were injected with either substance P (1 ng/g) or vehicle. Different groups of mice were retrained on the same task either 1, 2, 3, or 7 days after original learning. Savings scores were calculated and, at every interval, substance P-treated mice retained the task better than control animals. One interpretation of these data is that substance P-treated mice remembered the original task significantly better than vehicle-injected control animals.  相似文献   

3.
The question examined in this study is concerned with a possible functional dissociation between the hippocampal formation and the prefrontal cortex in spatial navigation. Wistar rats with hippocampal damage (inflicted by a bilateral lesion of the fimbria fornix), rats with damage to the medial prefrontal cortex, and control-operated rats were examined for their performance in either one of two different spatial tasks in a Morris water maze, a place learning task (requiring a locale system), or a response learning task (requiring a taxon system). Performance of the classical place learning (allocentric) task was found to be impaired in rats with lesions of the fimbria fornix, but not in rats with damage of the medial prefrontal cortex, while the opposite effect was found in the response learning (egocentric) task. These findings are indicative of a double functional dissociation of these two brain regions with respect to the two different forms of spatial navigation. When the place learning task was modified by relocating the platform, the impairment in animals with fimbria fornix lesions was even more pronounced than before, while the performance of animals with medial prefrontal cortex lesions was similar to that of their controls. When the task was again modified by changing the hidden platform for a clearly visible one (visual cue task), the animals with fimbria fornix lesions had, at least initially, shorter latencies than their controls. By contrast, in the animals with medial prefrontal cortex damage this change led to a slight increase in escape latency.  相似文献   

4.
A series of studies had revealed a dualistic role of post-trial injections of substance P in affecting avoidance behavior depending on the site of the brain in which it is applied. Based on these data, the hypothesis was formulated that substance P has brain site-dependent rewarding and punishing properties, a possibility which was assessed in rats trained on a modified T-maze task. Injections of substance P into the medial forebrain bundle (100 ng) or medial septal nucleus (500 ng) served as a positive reinforcer for conditioned place preference learning in the T maze. Injections into the amygdala (50 ng) or substantia nigra (100 ng) did not have such reinforcing properties.  相似文献   

5.
Fos protein immunodetection was used to investigate the neuronal activation elicited in some olfactory-related areas after either learning of an olfactory discrimination task or its reactivation 10 d later. Trained rats (T) progressively acquired the association between one odor of a pair and water-reward in a four-arm maze. Two groups of pseudotrained rats were used: PO rats were not water restricted and were submitted to the olfactory stimuli in the maze without any reinforcement, whereas PW rats were water-deprived and systematically received water in the maze without any odorous stimulation. When the discrimination task was well mastered, a significantly lower Fos immunoreactivity was observed in T rats compared to PW and PO rats in most of the analyzed brain areas, which could reflect the post-acquisition consolidation process. Following memory reactivation, differences in Fos immunoreactivity between trained and some pseudotrained rats were found in the anterior part of piriform cortex, CA3, and orbitofrontal cortex. We also observed that Fos labeling was significantly higher in trained rats after memory reactivation than after acquisition of the olfactory task in most of the brain areas examined. Our results support the assumption of a differential involvement of neuronal networks after either learning or reactivation of an olfactory discrimination task.  相似文献   

6.
The current study evaluated preference for mode of instruction (i.e., visual or vocal) for four children diagnosed with a language-based learning disability. Each participant was an elementary student who was initially referred to a neuropsychology clinic specializing in learning disabilities. As a part of the evaluation, measures of each participant’s academic skills were collected. Following the diagnostic evaluation, each participant was referred to a behavioral psychologist to participate in this two-experiment study. In Experiment 1, preference for mode of instruction was evaluated within a concurrent schedules design across increasing task difficulty. In Experiment 2, changes in preference for mode of instruction following increases in task amount were evaluated via a progressive ratio arrangement within a concurrent schedules design. Results from both experiments showed that preference for mode of instruction can change under high-effort conditions (i.e., task difficulty and task amount).  相似文献   

7.
Wistar rats, treated with the GABA(A) receptor agonist muscimol, were used to investigate the role of the hippocampal-prelimbic cortical (Hip-PLC) circuit in spatial learning in the Morris water maze task, and in passive avoidance learning in the step-through task. In the water maze task, animals were trained for three consecutive days and tested 24 h after the end of training. In the step-through task, the animals were trained once and tested 24h after training. On the training days, daily infusion of muscimol (0.5 microg/0.25 microl) was given (1) bilaterally to the ventral hippocampus (vHip), (2) bilaterally to the prelimbic cortex (PLC), (3) to the unilateral vHip and the ipsilateral PLC, or (4) for disconnecting the Hip-PLC circuit, to both the unilateral vHip and the contralateral PLC 30 min before training. The results showed that inhibition of the vHip resulted in disruption of performance in both tasks. Inhibition of the PLC produced impaired water maze performance, but had no effect on the step-through task. Disconnection of the Hip-PLC circuit produced similar effects to PLC inhibition. However, simultaneous inhibition of the unilateral vHip and the ipsilateral PLC had little effect on performance of the water maze task. The results suggested that spatial learning depends on the Hip-PLC circuit, whereas passive avoidance learning is independent of this circuit.  相似文献   

8.
This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation-associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items.  相似文献   

9.
Taste aversion learning is induced through two different behavioral procedures: a short-term or concurrent (two-daily flavors) and a long-term or sequential (one-daily flavor) procedure. For the concurrent group of animals, two gustatory/olfactory stimuli are presented separately but at the same time on a daily basis. One is paired with simultaneous intragastric administration of hypertonic NaCl and the other with physiological saline. For the sequential group, the two stimuli are presented on alternate days, one of them followed by intragastric injection of the aversive stimulus and the other by saline, both after a delay of 15 min. The two groups learned the task, but when they were subjected to a flavor-placement reversal test only the sequential group was successful in achieving it. In a second experiment, three groups of animals had to learn concurrent or sequential discrimination tasks (with either simultaneous or delayed administration of the visceral stimulus) using only spatial/proprioceptive cues. The data show that none of the groups learned them under these conditions. The results are discussed in terms of the different modalities of learning. Short-term and long-term taste aversion learning are different in the anatomical structures involved, the number of trials required for acquisition and, as shown in this paper, flexibility.  相似文献   

10.
The Morris water maze is a task widely used to investigate cellular and molecular changes associated with spatial learning and memory. This task has both spatial and aversive (swimming related stress) components. It is possible that stress may influence cellular modifications observed after learning the Morris water maze spatial task. Heat shock proteins, also known as stress proteins, are up-regulated in response to thermal stress, trauma, or environmental insults. In the rat hippocampus, psychophysiological stress increases the levels of heat shock protein 70 (HSC70). In this study, we investigated whether the expression of the hsc70 gene is modulated in the hippocampus during learning of the Morris water maze task. Five groups of rats were trained in the Morris water maze task for varying amounts of time (either 1, 2, 3, 4, or 5 days). Training consisted of 10 trials/day in which the animals were given 60s to find a submerged platform. Rats were sacrificed 24h after their last training trial. Results showed a significant increase in hsc70 mRNA and protein levels in the hippocampal formation after two and three days of training, respectively. The increase in mRNA and protein was associated with learning but not stress because the increase was not observed in the yoked control animals. These findings suggest that cellular and molecular changes can occur independent of stress. Moreover, the results are the first to implicate hsc70 expression in spatial learning.  相似文献   

11.
A common cellular alteration, reduced post-burst afterhyperpolarization (AHP) in CA1 neurons, is associated with acquisition of the hippocampus-dependent tasks trace eyeblink conditioning and the Morris water maze. As a similar increase in excitability is correlated with these two learning paradigms, we sought to determine the interactive behavioral effects of training animals on both tasks by using either a consecutive or simultaneous training design. In the consecutive design, animals were trained first on either the trace eyeblink conditioning task for six sessions, followed by training on the water maze task for six sessions, or vice versa. The simultaneous design consisted of six or 11 training days; animals received one session/day of both trace eyeblink conditioning and water maze training. Separate groups were used for consecutive and simultaneous training. Animals trained on both tasks simultaneously were significantly facilitated in their ability to acquire the trace eyeblink conditioning task; no effect of simultaneous training was seen on the water maze task. No effect was seen on acquisition for either task when using the consecutive training design. Taken together, these findings provide insight into how the hippocampus processes information when animals learn multiple hippocampus-dependent tasks.  相似文献   

12.
Although a number of studies have shown that treatment with calcium channel antagonists (CCAs) can ameliorate impairments in learning and memory in aged animals, evidence for a general nootropic effect of CCAs in neurologically normal young adult animals is ambiguous. This study attempts to resolve some of this ambiguity by comparing the effects of several CCAs on retention of passive avoidance learning and acquisition and retention of appetitively motivated spatial discrimination learning in young adult mice. Animals were trained in a step through passive avoidance apparatus and, immediately after training, injected subcutaneously with different doses of nimodipine, nifedipine, amlodipine, flunarazine, diltiazem, or verapamil. Retention was tested 24 h after training. In the maze-learning task mice were treated with the same doses of the aforementioned CCAs immediately after a brief training session in a linear maze and retention was tested 24 h after training. The most effective dose of each agent in the maze-retention experiment was administered to additional groups of animals 1 h prior to training to determine the effects of CCAs on acquisition processes. The effects of central administration of CCAs were examined by intracerebroventricular injection of different doses of amlodipine immediately after passive avoidance training. Results showed (1) all peripherally administered drugs except verapamil facilitated retention of passive avoidance training in a dose-dependent manner, (2) all drugs dose dependently facilitated retention of linear maze learning, (3) all doses of the drugs (except verapamil) which facilitated maze retention also facilitated maze learning, and (4) central administration of the dihydropyridine amlodipine produced a dose-dependent facilitation of the retention of passive avoidance learning. These data indicate that drugs which block calcium channels can enhance retention of two different types of learning in mice.  相似文献   

13.
14.
Nurr1 expression is up-regulated in the brain following associative learning experiences, but its relevance to cognitive processes remains unclear. In these studies, rats initially received bilateral hippocampal infusions of control or antisense oligodeoxynucleotides (ODNs) 1 h prior to training in a holeboard spatial discrimination task. Such pre-training infusions of nurr1 antisense ODNs caused a moderate effect in learning the task and also impaired LTM tested 7 d later. In a second experiment, ODN infusions were given immediately after the animals had received two sessions of training, during which all animals showed normal learning. Although antisense treated rats were significantly impaired during the post-infusion stages of acquisition of the task, no group differences were observed during the LTM test given 7 d later. These animals were subjected 3 d later to reversal training in the same maze in the absence of any additional treatments. Remarkably, rats previously treated with antisense ODNs displayed perseveration: The animals were fixated with the previously learned pattern of baited holes, causing them to be significantly impaired in the extinction of acquired spatial preferences and future learning. We postulate that Nurr1 function in the hippocampus is important for normal cognitive processes.  相似文献   

15.
16.
Experiments 1 and 2 tested the hypothesis that cholinergic receptor antagonists impair place learning in a water maze by interfering with the processing of distal, visual cues. Extramaze cues were offered to rats in the form of geometrical patterns arranged on the inner circumference of a curtain surrounding the water maze. In Experiment 1 the animals were offered both the distal cues and proximal cues in the form of pingpong balls in fixed positions on the surface of the water while only distal cues were present in Experiment 2. Animals were injected with either scopolamine (0.5 mg/kg body wt) or saline 20 min prior to the daily place learning sessions. Upon reaching criterion level performance the animals were tested on "rotation" sessions on which the distal cues were displaced. The outcome of such "rotations" demonstrated that-regardless of the presence or absence of proximal cues-scopolamine-treated rats relied at least as much as normal animals on the distal cues. The acquisition phase of both Experiments 1 and 2 demonstrated an almost complete lack of scopolamine-associated impairment in acquisition and performance of the place learning task. In Experiment 3 (when scopolamine was no longer administered) the subjects of Experiment 2 were exposed to a series of pharmacological "challenges" of their place learning performance and eventually to surgical ablation of the anteromedial prefrontal cortex. The outcome of the pharmacological challenges and the postoperative test of task performance demonstrated that the place learning performance of animals which had acquired the task under scopolamine was mediated by a neural substrate dissimilar to the substrate of task performance in normal animals. Rats acquiring the task while deprived of the cholinergic system demonstrated above-normal contributions to task mediation from catecholaminergic-probably dopaminergic-mechanisms and tentative results pointed to a "shift" toward prefrontal task mediation.  相似文献   

17.
When placed in a water-filled maze, mice display a pronounced preference for the illuminated over the nonilluminated arm of the maze. Exposure to inescapable shock increased the time spent in the illuminated arm of the maze, and decreased the frequency of entries into the nonilluminated arm. When animals that had received shock entered the nonilluminated arm they exhibited more activity per second than nonstressed animals. Controllability over the stressor enhanced the preference for the illuminated arm; however, the contribution of this variable was dependent on the number of shock trials mice received. Following 180 escapable or inescapable shock presentations the preference for the illuminated arm was enhanced. The propensity to approach the illuminated arm declined following a greater number (360) of escapable shock trials, while the preference for the illuminated arm did not decline in mice that received inescapable shock. Both escapable and inescapable shock were also found to produce a transient disruption of discrimination performance in a task where animals were required to emit a contraprepared response (swim to dark), whereas these treatments were without effect on performance of the highly prepared response of approaching the illuminated arm. It is provisionally suggested that enhancement of the perseveration represents an innate response to stressful stimuli, but as animals learn mastery over the response contingencies, the persistence in adopting such a response strategy wanes. Moreover, despite the differential effects of escapable and inescapable shock on the perseverative tendency, discrimination accuracy may not be differentially affected by these treatments in a task where acquisition progresses quickly and where explicit cues are associated with the correct and incorrect arms of the maze.  相似文献   

18.
The immediate-early gene hzf-3, also known as nurr1, is a member of the inducible orphan nuclear receptor family and is one candidate in the search for genes associated with learning and memory processes. Here we report that acquisition of a spatial food search task is accompanied by elevated levels of hzf-3 mRNA in the hippocampus. Adult male Long-Evans rats were handled, food-restricted, and allowed to habituate to the maze prior to training. During acquisition, rats were given one training session per day for 5 days. Each training session consisted of five trials in which animals searched the maze for food located in 4 of 16 holes in the floor of the maze. Training resulted in spatial acquisition of the task. Northern blot analysis showed significant increases in hippocampal hzf-3 mRNA 3 h after training in the maze. Next, brains were obtained from Naive, Habituated, Day 1, Day 3, and Day 5 animals and processed for in situ hybridization. The results showed significant increases of hzf-3 mRNA in CA1 and CA3 subregions of the dorsal hippocampus during acquisition of the task. We conclude that expression of the hzf-3 gene in the brain is associated with long-term spatial memory processes. The present results are the first to implicate an orphan nuclear receptor in long-term information storage in the hippocampus.  相似文献   

19.
Impairment of hippocampal function precedes frontal and parietal cortex impairment in human Alzheimer's disease (AD). Neurotrophins are critical for behavioral performance and neuronal survival in AD. We used complex and radial mazes to assess spatial orientation and learning in wild-type and B6-Tg(ThylAPP)23Sdz (APP23) animals, a transgenic mouse model of AD. We also assessed brain content of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3). Performance was alike in wild-type and APP23 animals in the radial maze. In contrast, performance in the complex maze was better in wild-type than APP23 animals. Contrary to the wild-type, hippocampal BDNF levels decreased on training in APP23 animals. Hippocampal and frontal cortex NGF levels in APP23 animals correlated with the time to solve the complex maze, but correlated inversely with escape time in wild-type animals. NT-3 levels were alike in wild-type and APP23 animals and were unchanged even after training. Both types of mazes depend on hippocampal integrity to some extent. However, according to the cognitive mapping theory of spatial learning, the complex maze because of the increased complexity of the environment most likely depends more strongly on preserved hippocampal function than the radial maze in the working memory configuration applied here. Greater impairment in complex maze performance than in radial maze performance thus resembles the predominant affliction of the loss of hippocampal function in human AD. NGF and BDNF levels on maze learning are different in wild-type and transgenic animals, indicating that biological markers of AD may be altered on challenge even though equilibrium levels are alike.  相似文献   

20.
The effects of age on cue learning, spatial reference memory, and strategy preference were assessed in B6 × SJL F1 mice by using the Morris water maze. This mouse strain is of particular interest because it is the background strain for a common transgenic model of Alzheimer's disease, the Tg2576 mouse, which develops plaques and other neurobiological markers of pathology beginning at 8 mo and increasing in severity with advanced age. In the current study, 12- and 23-mo-old C57B6 × SJL F1 mice were serially trained in cue and place versions of the Morris water maze task. At the completion of training, mice received a strategy probe test in which place (hidden) and cue (visible) strategies were in competition. Cue and spatial learning ability was maintained between 12 and 23 mo of age; however, on the strategy preference probe test, the 23-mo-old mice exhibited a significant bias toward the selection of a cue strategy. There was no relationship between strategy preference in the probe test and spatial learning ability, but the 23-mo-old mice did exhibit a strong trend toward shorter latencies during visible platform training, possibly reflecting the enhanced function of striatal-based neural systems in aging. These data demonstrate that 23-mo-old C57B6 × SJL F1 mice are capable of effective place learning, but if a place strategy is pitted against the use of a cue strategy, the use of a cue strategy predominates in the aged mice. The strategy preference observed here may reflect an emergence of differential processing in underlying brain circuitry with age in the B6 × SJL F1 mouse strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号