首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT— There is compelling molecular and behavioral evidence that goal-directed cognition is an evolutionary descendant of spatial-foraging behavior. Across animal species, similar dopaminergic processes modulate between exploratory and exploitative foraging behaviors and control attention. Consequently, we hypothesized that spatial-foraging activity could prime attentional cognitive activity. We examined how searching in physical space influences subsequent search in abstract cognitive space by presenting participants with a spatial-foraging task followed by a repeated Scrabble task involving search for words that could be made from letter sets. Participants who searched through clumpier distributions in space behaved as if words were more densely clumped in the Scrabble task. This was not a function of arousal, but was consistent with predictions of optimal-foraging theory. Furthermore, individual differences in exploratory search were conserved across the two types of tasks. Along with the biological evidence, our results support the idea that there are generalized cognitive search processes.  相似文献   

2.
Dopamine and the origins of human intelligence   总被引:10,自引:0,他引:10  
A general theory is proposed that attributes the origins of human intelligence to an expansion of dopaminergic systems in human cognition. Dopamine is postulated to be the key neurotransmitter regulating six predominantly left-hemispheric cognitive skills critical to human language and thought: motor planning, working memory, cognitive flexibility, abstract reasoning, temporal analysis/sequencing, and generativity. A dopaminergic expansion during early hominid evolution could have enabled successful chase-hunting in the savannas of sub-Saharan Africa, given the critical role of dopamine in counteracting hyperthermia during endurance activity. In turn, changes in physical activity and diet may have further increased cortical dopamine levels by augmenting tyrosine and its conversion to dopamine in the central nervous system (CNS). By means of the regulatory action of dopamine and other substances, the physiological and dietary changes may have contributed to the vertical elongation of the body, increased brain size, and increased cortical convolutedness that occurred during human evolution. Finally, emphasizing the role of dopamine in human intelligence may offer a new perspective on the advanced cognitive reasoning skills in nonprimate lineages such as cetaceans and avians, whose cortical anatomy differs radically from that of primates.  相似文献   

3.
从类别学习和分类运用(包括非人类对象分类和社会分类)两个方面阐述了分类的神经机制。类别学习主要与新皮层、内侧颞叶、基底神经节、中脑多巴胺能系统有关, 不同类别的学习会激活这些神经系统间不同的连接。对非人类对象分类时, 不同类型、级别、熟悉度及相似度类别分类的神经机制不同, 分类对象的清晰度、类别不确定性会影响分类的神经机制, 在分类进程的不同时段会出现对应的ERP指标。社会分类时个体先注意到外群体再加工内群体, 且对内群体的加工更深, P200和N200是对内、外群体区分的特异性波, 内外群体分类时, 内群体激活梭状回和扣带回后部, 外群体激活杏仁核。文章最后比较了人类和灵长类动物分类神经机制的异同, 并指出社会分类和非人类对象分类神经机制的整合以及人类和灵长类动物分类神经机制的比较是今后研究需要关注的问题。  相似文献   

4.
Northoff G 《The Behavioral and brain sciences》2002,25(5):555-77; discussion 578-604
Differential diagnosis of motor symptoms, for example, akinesia, may be difficult in clinical neuropsychiatry. Symptoms may be either of neurologic origin, for example, Parkinson's disease, or of psychiatric origin, for example, catatonia, leading to a so-called "conflict of paradigms." Despite their different origins, symptoms may appear more or less clinically similar. Possibility of dissociation between origin and clinical appearance may reflect functional brain organisation in general, and cortical-cortical/subcortical relations in particular. It is therefore hypothesized that similarities and differences between Parkinson's disease and catatonia may be accounted for by distinct kinds of modulation between cortico-cortical and cortico-subcortical relations. Catatonia can be characterized by concurrent motor, emotional, and behavioural symptoms. The different symptoms may be accounted for by dysfunction in orbitofrontal-prefrontal/parietal cortical connectivity reflecting "horizontal modulation" of cortico-cortical relation. Furthermore, alteration in "top-down modulation" reflecting "vertical modulation" of caudate and other basal ganglia by GABA-ergic mediated orbitofrontal cortical deficits may account for motor symptoms in catatonia. Parkinson's disease, in contrast, can be characterized by predominant motor symptoms. Motor symptoms may be accounted for by altered "bottom-up modulation" between dopaminergic mediated deficits in striatum and premotor/motor cortex. Clinical similarities between Parkinson's disease and catatonia with respect to akinesia may be related with involvement of the basal ganglia in both disorders. Clinical differences with respect to emotional and behavioural symptoms may be related with involvement of different cortical areas, that is, orbitofrontal/parietal and premotor/motor cortex implying distinct kinds of modulation--"vertical" and "horizontal" modulation, respectively.  相似文献   

5.
A complex form of higher nervous activity, conditional reflex transswitching or switching, was elaborated in four dogs under conditions of unrestrained movements, freedom of reinforcement choice (food or water), place of reinforcement determined by situation factors as well as independent switching on of conditional stimuli. It was shown that motivated goal-directed behavior of the animals was determined by activation of forward and backward connections. The chains of instrumental conditioned reflexes forming in the final analysis the complex behavior are developed according to the “trialand-error” principle. In the instrumental conditioned reflexes there are two constantly coexisting types of mutually complementing conditioned connections of the signal with reinforcement—direct and indirect. In experiments with unrestrained conditions of animals and independent regulation of the experiment, one of the frequently encountered physiological mechanisms of generalization appears to be efferent and afferent generalization.  相似文献   

6.
时间认知神经科学研究进展   总被引:6,自引:1,他引:5  
杨珍  黄希庭 《心理科学》2005,28(6):1506-1509
当前对时间认知的脑机制探讨有三个模型:特异化计时模型、分布网络模型和定域计时模型。在这些模型的框架下,时间认知的神经心理学研究集中探讨了小脑、基底神经节、前额叶在时间信息加工中的作用和大脑两半球在时间认知中的不对称性。小脑作为内部计时系统对时间控制具有重要作用,在周期性动作任务中,小脑对不连续动作计时具有特异性。基底神经节在时间加工任务中与小脑存在明显的作用分离,其具体机制还有待深入研究。前额叶的计时功能可能与注意和工作记忆对时间信息的获得、维持和组织有关。此外,还发现大脑右半球与时问信息的加工关系密切。  相似文献   

7.
Building on our previous neurocomputational models of basal ganglia and hippocampal region function (and their modulation by dopamine and acetylcholine, respectively), we show here how an integration of these models can inform our understanding of the interaction between the basal ganglia and hippocampal region in associative learning and transfer generalization across various patient populations. As a common test bed for exploring interactions between these brain regions and neuromodulators, we focus on the acquired equivalence task, an associative learning paradigm in which stimuli that have been associated with the same outcome acquire a functional similarity such that subsequent generalization between these stimuli increases. This task has been used to test cognitive dysfunction in various patient populations with damages to the hippocampal region and basal ganglia, including studies of patients with Parkinson’s disease (PD), schizophrenia, basal forebrain amnesia, and hippocampal atrophy. Simulation results show that damage to the hippocampal region—as in patients with hippocampal atrophy (HA), hypoxia, mild Alzheimer’s (AD), or schizophrenia—leads to intact associative learning but impaired transfer generalization performance. Moreover, the model demonstrates how PD and anterior communicating artery (ACoA) aneurysm—two very different brain disorders that affect different neural mechanisms—can have similar effects on acquired equivalence performance. In particular, the model shows that simulating a loss of dopamine function in the basal ganglia module (as in PD) leads to slow acquisition learning but intact transfer generalization. Similarly, the model shows that simulating the loss of acetylcholine in the hippocampal region (as in ACoA aneurysm) also results in slower acquisition learning. We argue from this that changes in associative learning of stimulus–action pathways (in the basal ganglia) or changes in the learning of stimulus representations (in the hippocampal region) can have similar functional effects.  相似文献   

8.
The basal ganglia and cortico-striato-thalamo-cortical connections are known to play a critical role in sequence skill learning and increasing automaticity over practice. The current paper reviews four studies comparing the sequence skill learning and the transition to automaticity of persons who stutter (PWS) and fluent speakers (PNS) over practice. Studies One and Two found PWS to have poor finger tap sequencing skill and nonsense syllable sequencing skill after practice, and on retention and transfer tests relative to PNS. Studies Three and Four found PWS to be significantly less accurate and/or significantly slower after practice on dual tasks requiring concurrent sequencing and colour recognition over practice relative to PNS. Evidence of PWS’ deficits in sequence skill learning and automaticity development support the hypothesis that dysfunction in cortico-striato-thalamo-cortical connections may be one etiological component in the development and maintenance of stuttering.

Educational objectives: As a result of this activity, the reader will: (1) be able to articulate the research regarding the basal ganglia system relating to sequence skill learning; (2) be able to summarize the research on stuttering with indications of sequence skill learning deficits; and (3) be able to discuss basal ganglia mechanisms with relevance for theory of stuttering.  相似文献   


9.
The neuropsychology of religious activity in normal and selected clinical populations is reviewed. Religious activity includes beliefs, experiences, and practice. Neuropsychological and functional imaging findings, many of which have derived from studies of experienced meditators, point to a ventral cortical axis for religious behavior, involving primarily the ventromedial temporal and frontal regions. Neuropharmacological studies generally point to dopaminergic activation as the leading neurochemical feature associated with religious activity. The ventral dopaminergic pathways involved in religious behavior most closely align with the action-extrapersonal system in the model of 3-D perceptual-motor interactions proposed by . These pathways are biased toward distant (especially upper) space and also mediate related extrapersonally dominated brain functions such as dreaming and hallucinations. Hyperreligiosity is a major feature of mania, obsessive-compulsive disorder, schizophrenia, temporal-lobe epilepsy and related disorders, in which the ventromedial dopaminergic systems are highly activated and exaggerated attentional or goal-directed behavior toward extrapersonal space occurs. The evolution of religion is linked to an expansion of dopaminergic systems in humans, brought about by changes in diet and other physiological influences.  相似文献   

10.
Temporal processing of intervals in the range of seconds or more is cognitively mediated, whereas processing of brief durations below 500 msec appears to be based on brain mechanisms outside cognitive control. To elucidate the critical role of various neurotransmitters in timing processes in humans, the effects of 3 mg of haloperidol, a dopamine receptor antagonist, 11 mg of the benzodiazepine midazolam, and 1 mg of scopolamine, a cholinergic receptor antagonist, were compared in a placebo-controlled double-blind experiment. In addition, changes in cortical arousal, semantic memory, and cognitive and motor skill acquisition were assessed. Temporal processing of long durations was significantly impaired by haloperiodol and midazolam, whereas processing of extremely brief intervals was only affected by haloperidol. The overall pattern of results supports the notion that temporal processing of longer intervals is mediated by working-memory functions and, therefore, any pharmacological treatment, irrespective of the neurotransmitter system involved, that produces a deterioration of working memory, may interfere with temporal processing of longer intervals. Temporal processing of intervals in the range of milliseconds appears to depend on the effective level of dopaminergic activity in the basal ganglia.  相似文献   

11.
To understand the neural basis of human speech control, extensive research has been done using a variety of methodologies in a range of experimental models. Nevertheless, several critical questions about learned vocal motor control still remain open. One of them is the mechanism(s) by which neurotransmitters, such as dopamine, modulate speech and song production. In this review, we bring together the two fields of investigations of dopamine action on voice control in humans and songbirds, who share similar behavioral and neural mechanisms for speech and song production. While human studies investigating the role of dopamine in speech control are limited to reports in neurological patients, research on dopaminergic modulation of bird song control has recently expanded our views on how this system might be organized. We discuss the parallels between bird song and human speech from the perspective of dopaminergic control as well as outline important differences between these species.  相似文献   

12.
To investigate maturational plasticity of fluid cognition systems, functional brain imaging was undertaken in healthy 8-19 year old participants while completing visuospatial relational reasoning problems similar to Raven's matrices and current elementary grade math textbooks. Analyses revealed that visuospatial relational reasoning across this developmental age range recruited activations in the superior parietal cortices most prominently, the dorsolateral prefrontal, occipital-temporal, and premotor/supplementary cortices, the basal ganglia, and insula. There were comparable activity volumes in left and right hemispheres for nearly all of these regions. Regression analyses indicated increasing activity predominantly in the superior parietal lobes with developmental age. In contrast, multiple anterior neural systems showed significantly less activity with age, including dorsolateral and ventrolateral prefrontal, paracentral, and insula cortices bilaterally, basal ganglia, and particularly large clusters in the midline anterior cingulate/medial frontal cortex, left middle cingulate/supplementary motor cortex, left insula-putamen, and left caudate. Findings suggest that neuromaturational changes associated with visuospatial relational reasoning shift from a more widespread fronto-cingulate-striatal pattern in childhood to predominant parieto-frontal activation pattern in late adolescence.  相似文献   

13.
A pervasive hypothesis in the timing literature is that temporal processing in the milliseconds and seconds range engages the basal ganglia and is modulated by dopamine. This hypothesis was investigated by testing 12 patients with Parkinson's disease (PD), both 'on' and 'off' dopaminergic medication, and 20 healthy controls on three timing tasks. In a seconds range (30-120 s) time production task, patients tested 'on' medication showed a significantly different accuracy profile compared to controls and when tested 'off' medication. However, no group or on vs off medication differences in accuracy were found on a time reproduction task and a warned reaction time task requiring temporal processing within the 250-2000 ms range. Variability was measured using the coefficient of variation, with the performance of the patient group on the time reproduction task violating the scalar property, suggesting atypical temporal processing mechanisms. The data suggest that the integrity of the basal ganglia is necessary for 'typical' time production in the seconds range as well as for time reproduction at shorter intervals. Exploratory factor analysis suggested that the time production task uses neural mechanisms distinct from those used in the other two timing tasks. The dissociation of the effects of dopaminergic medication and nature of task on performance in PD raises interesting questions about the pharmacological mediation and task-specificity of deficits in temporal processing.  相似文献   

14.
Adolescence is characterized by increased risk-taking, novelty-seeking, and locomotor activity, all of which suggest a heightened appetitive drive. The neurotransmitter dopamine is typically associated with behavioral activation and heightened forms of appetitive behavior in mammalian species, and this pattern of activation has been described in terms of a neurobehavioral system that underlies incentive-motivated behavior. Adolescence may be a time of elevated activity within this system. This review provides a summary of changes within cortical and subcortical dopaminergic systems that may account for changes in cognition and affect that characterize adolescent behavior. Because there is a dearth of information regarding neurochemical changes in human adolescents, models for assessing links between neurochemical activity and behavior in human adolescents will be described using molecular genetic techniques. Furthermore, we will suggest how these techniques can be combined with other methods such as pharmacology to measure the impact of dopamine activity on behavior and how this relation changes through the lifespan.  相似文献   

15.
The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC). Activation via NMDAR is critical for the induction of DA-LTP in both apical and basal dendrites, but only BDNF is required for the induction and maintenance of DA-LTP in apical dendrites. We report that dopaminergic modulation of LTP is lamina-specific at the Schaffer collateral/commissural synapses in the CA1 region.  相似文献   

16.
This article explored functional roles of the proprioceptive system during the control of goal-directed movements. Proprioceptive information contributes to the control of movement through both reflex and central connections. Spinal and transcortical reflex loops establish a servomechanism which provides automatic corrections of unexpected changes in muscle length and allows compensation for undesirable irregularities in the mechanical properties of muscles by modulating limb stiffness at the subconscious level. Central connections provide the control system with information about peripheral states which is used in voluntary components of movement control. Before the initiation of movement, proprioceptive information about initial limb orientation becomes a basis for the programming of motor commands. During a movement, proprioceptive input about velocities and angular displacements of a limb is used to regulate movement by triggering planned sequences of muscle activation and modulating motor commands. After movement, feedback produced by responses is compared with previously stored information, verifying the quality of the movement. Considering potential roles of the reflex and central connections, the proprioceptive system seems to constitute an important aspect of motor control mechanisms, providing the control system with efficiency and flexibility in the regulation of goal-directed movements.  相似文献   

17.
In humans, conscious perception and cognition depends upon the thalamocortical (T-C) complex, which supports perception, explicit cognition, memory, language, planning, and strategic control. When parts of the T-C system are damaged or stimulated, corresponding effects are found on conscious contents and state, as assessed by reliable reports. In contrast, large regions like cerebellum and basal ganglia can be damaged without affecting conscious cognition directly. Functional brain recordings also show robust activity differences in cortex between experimentally matched conscious and unconscious events. This basic anatomy and physiology is highly conserved in mammals and perhaps ancestral reptiles. While language is absent in other species, homologies in perception, memory, and motor cortex suggest that consciousness of one kind or another may be biologically fundamental and phylogenetically ancient. In humans we infer subjective experiences from behavioral and brain evidence. This evidence is quite similar in other mammals and perhaps some non-mammalian species. On the weight of the biological evidence, therefore, subjectivity may be conserved in species with human-like brains and behavior.  相似文献   

18.
Prior work on patients with Parkinson's disease (PD) has shown that the administration of dopaminergic medication in the early to intermediate stages of PD benefits (motor) functions associated with the dopamine-depleted dorsal striatal circuitry but may ‘overdose’ and interfere with (cognitive) functions associated with the relatively intact ventral striatal circuitry. The present study aimed to elucidate this so-called dopamine overdose hypothesis for the action control domain. Using a within-subject design in a sample of 13 people with PD, we evaluated the effect of dopaminergic medication on two cognitive processes underlying goal-directed behaviour, namely action selection and initiation through event binding and conflict adaptation. We also investigated whether individual differences in the magnitude of medication effects were associated across these processes. Results showed no indications that dopaminergic medication affects action selection and initiation or conflict adaptation in PD patients. Additionally, we observed no correlations between both cognitive processes nor between individual differences in medication effects. Our findings do not support the notion that dopaminergic medication modulates action control processes, suggesting that the dopamine overdose hypothesis may only apply to a specific set of cognitive processes and should potentially be refined.  相似文献   

19.
The traditional view that the basal ganglia are simply involved in the control of movement has been challenged in recent years. Three lines of evidence indicate that the basal ganglia also are involved in nonmotor operations. First, the results of anatomical studies clearly indicate that the basal ganglia participate in multiple circuits or 'loops' with cognitive areas of the cerebral cortex. Second, the activity of neurons within selected portions of the basal ganglia is more related to cognitive or sensory operations than to motor functions. Finally, in some instances basal ganglia lesions cause primarily cognitive or sensory disturbances without gross motor impairments. In this report, we briefly review some of these data and present a new anatomical framework for understanding the basal ganglia contributions to nonmotor function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号