首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Damage to the medial region of the thalamus, both in clinical cases (e.g., patients with infarcts or the Korsakoff's syndrome) and animal lesion models, is associated with variable amnesic deficits. Some studies suggest that many of these memory deficits rely on the presence of lateral thalamic lesions (LT) that include the intralaminar nuclei, presumably by altering normal function between the striatum and frontal cortex. Other studies suggest that the anterior thalamic nuclei (AT) may be more critical, as a result of disruption to an extended hippocampal system. Here, highly selective LT and AT lesions were made to test the prediction that these two regions contribute to two different memory systems. Only LT lesions produced deficits on a preoperatively acquired response-related (egocentric) working memory task, tested in a cross-maze. Conversely, only AT lesions impaired postoperative acquisition of spatial working memory, tested in a radial maze. These findings provide the first direct evidence of a double dissociation between the LT and AT neural aggregates. As the lateral and the anterior medial thalamus influence parallel independent memory processing systems, they may each contribute to memory deficits, depending on lesion extent in clinical and experimental cases of thalamic amnesia.  相似文献   

2.
Medial dorsal thalamic lesions and working memory in the rat   总被引:1,自引:0,他引:1  
Pigmented rats of the DA strain with either radiofrequency or ibotenic acid lesions of the thalamic nucleus medialis dorsalis were postoperatively given nonspatial and spatial tests of working memory. In the nonspatial task, delayed nonmatching-to-sample, rats with both types of thalamic lesions showed acquisition impairments. The subgroup of rats with nucleus medialis dorsalis lesions that were able to reach the acquisition criterion did, however, perform normally when the retention interval was extended to 60 s. In the spatial task, delayed forced-alternation, rats were tested with differing retention intervals and with both spaced and massed trials. Damage to nucleus medialis dorsalis had no effect on acquisition or on spaced trials, but a slight deficit was found in the animals with radiofrequency lesions under the massed trial condition. Much clearer deficits were, however, present in those animals in which the lesion extended appreciably into the anterior thalamic nuclei. The findings indicate that while cellular damage to nucleus medialis dorsalis may disrupt learning, some impairments in tests of spatial working memory attributed to this nucleus may reflect damage to the adjacent anterior thalamic nuclei.  相似文献   

3.
Transient deficits have been reported after unilateral entorhinal cortex (EC) lesion. To determine whether there is a more persistent deficit, adult male Sprague–Dawley rats with electrolytic or sham lesions of the left entorhinal cortex were examined on acquisition of a modified working memory task in the Morris water maze. This delayed matching-to-sample task, with a 1-h intertrial interval, reveals a significant deficit in total distance to platform in both presentation (Trial 1) and matching (Trial 2) in the rats with entorhinal lesions. We have also found that this test can be used to assess significant deficits in perseveration (repeated nonproductive movement) in rats with entorhinal lesions. The deficits can be seen up to 16 days postinjury. Administration of ganglioside GM1 resulted in a moderate improvement in performance in both water maze measures analyzed. All groups (sham operated, lesion with saline treatment, and lesion with ganglioside GM1 treatment) were given three other tests, which were used to evaluate possible contributing factors to deficient water maze performance. A one-trial test for exploration of novel objects revealed no significant, simple working memory deficit in any group. Plus maze testing, to assess possible differences in levels of anxiety or increased activity as a component of water maze performance, also revealed no differences in the three groups. All groups were also similar in motor activity, shown by monitoring of activity levels. The worsened water maze performance observed in rats with EC lesion may be related to deficits in working memory ability within the framework of acquisition of a more complex spatial learning task.  相似文献   

4.
东莨菪碱对大鼠空间参考记忆和工作记忆的不同影响   总被引:1,自引:0,他引:1  
观察东莨菪碱对空间参考记忆和空间工作记忆的编码、保持和提取过程的作用。应用Morris水迷宫实验测定大鼠的空间参考记忆和空间工作记忆,分别在训练的不同阶段腹腔注射东莨菪碱(1mg/kg)和相同容量的生理盐水,比较各东莨菪碱组和生理盐水组之间游泳潜伏期、路径长度、轨迹和游泳速度的差异。结果发现:与注射生理盐水相比,在训练前和探测实验前注射东莨菪碱的大鼠在探测实验中对目标象限不表现出空间偏爱,说明东莨菪碱干扰参考记忆的信息编码和提取过程;而在训练结束后注射东莨菪碱的大鼠探测实验的结果与生理盐水组相比没有显著差异,说明东莨菪碱对参考记忆的保持过程没有影响。在工作记忆实验中,无论第一次测试前、第一次测试后和第2次测试前注射东莨菪碱,均造成大鼠游泳潜伏期延长,说明东莨菪碱干扰工作记忆的编码、保持和提取过程。研究提示M受体在空间工作记忆和参考记忆中发挥不同作用  相似文献   

5.
The parafascicular (PF) nucleus, a posterior component of the intralaminar nuclei of the thalamus, is considered to be an essential structure in the feedback circuits of basal ganglia-thalamo-cortical systems that critically participate in cognitive processes. To study the PF contribution to processing of behaviorally significant information during specific episodes of learning, we investigated the effects of damaging the PF nucleus in the acquisition of a natural form of social olfactory learning, the socially transmitted food preference (STFP) task. This task is a non-spatial paradigm that exhibits some of the characteristics of relational memory because it requires that animals use information obtained in one episode to guide later behavior in different circumstances. Adult male Wistar rats were submitted to pretraining bilateral N-methyl-D-aspartate (0.15 M, pH 7.4) lesions of the PF (0.4 microl/side, 0.2 microl/min). The behavioral effects of PF lesions were compared to vehicle- and sham-operated control groups and two retention delays were considered in separate groups: immediately (Lesion-I, Vehicle-I, and Sham-I groups) and 24h after training (Lesion-24, Vehicle-24, and Sham-24 groups). PF lesions produced delay-independent impairments in the STFP suggesting that this nucleus might modulate the acquisition of this odor-odor association task. Results are discussed in the context of medial prefrontal cortex deafferentation induced by PF damage.  相似文献   

6.
Several series of experiments were designed to compare the effects of selective lesions of the fimbria or of thalamic nuclei on three different tasks involving working memory in rats: object recognition, place recognition, and the radial arm maze test. The main effects of fimbria lesions were as follows: they produced deficits in the radial maze; object recognition was spared or even facilitated, whereas place recognition was impaired. Electrolytic lesions of either centromedian-parafascicularis (CM-Pf) or dorsomedialis (DM) nuclei produced highly significant deficits in the radial maze test but spared object and place recognition. Ibotenate lesions of the CM-Pf had no effect on any test, which means that the critical structure in the effects of the electrolytic lesions of the CM-Pf was the fasciculus retroflexus (FR). These data may contribute two main points to animal models of hippocampal and thalamic amnesia: (1) different forms of working memory in rats might have different neural bases and (2) the FR may be involved in learning and memory processes.  相似文献   

7.
In the present study, F-344 rats throughout 1.5 to 26 months of age were tested in the reference memory version, a moving-platform repeated acquisition version, and in a cued platform version of the Morris water maze. The results suggest that: (1) performance in the water maze declines continuously, beginning at the earliest age, and very closely fits a linear function; (2) there are robust, reliable differences between individuals in terms of their performance in the Morris water maze, but chronological age accounts for only a fraction of the variance between individuals; (3) there is no evidence of a bimodal distribution among aged rats—there is no distinct subgroup of individuals that performs so poorly that they are qualitatively different from the majority of the population, and distinctions between “impaired” and “unimpaired” subjects must be based on arbitrary criteria that may not be consistent from one study to the next; (4) age-related deficits in the Morris water maze may not be restricted to learning and memory, but may also include deficits in attention, the ability to process spatial information, and/or the ability to develop efficient spatial search strategies; and (5) swim distance is the most appropriate measure of cognitive function in the Morris water maze, but the relationship between this measure and other measures of noncognitive function make it clear that swim distance may not be a pure measure of cognitive function. Although the Morris water maze remains a valuable preclinical test with better validity and specificity than many other behavioral tests, measures of performance in the Morris water maze should not be considered synonymous with cognitive function.  相似文献   

8.
The involvement of the cerebellum in procedural learning is demonstrated in visuomotor-sequence tasks, as lesion of this area impedes the acquisition of new sequences. Likewise, the lateral cerebellum appears to be involved in the acquisition of new sequences, but not in the execution of learned sequences. In contrast, the dentate nucleus participates only in the execution of learned visuomotor sequences. In previous studies, disruption of the procedural elements of spatial navigation following cerebellar or dentate lesions has been reported. However, as praxic strategies (egocentric learning) are included in the procedural elements of the navigation, the participation of the cerebellar-dentate nucleus in egocentric procedural learning processes has not been evaluated. Therefore, using colchicine, bilateral lesions were made in the cerebellar-dentate nucleus of Sprague-Dawley rats, and these rats were given two tasks: egocentric-based motor sequence learning in the radial maze and egocentric navigation in the Morris water maze. The lesioned rats were unable to use the sequential information in the short term and showed delayed long-term acquisition, which was probably due to the inability to detect the sequence. No effects on the egocentric navigation task were observed. Our results indicate that the cerebellar-dentate nucleus is involved in the detection of egocentric sequential information but not in the use of this information in the navigation process. Further, they show differential involvement of the cerebellar-dentate nucleus in the execution of learned visuomotor sequences, as the dentate lesion disrupted the acquisition of new egocentric-motor-based sequences.  相似文献   

9.
Caudate nucleus and memory for egocentric localization   总被引:5,自引:0,他引:5  
A large body of evidence suggests that the caudate nucleus (CN) plays a critical role in the processing of spatial localization information. Furthermore, evidence has begun to accumulate that the CN is involved in the processing of a very specific class of spatial cues, namely, egocentric cues (localization with reference to the organism). This is in contrast to allocentric localization, where an organism localizes on the basis of cues external to the organism. One would then predict that lesions to the CN should disrupt performance on any tasks that depend chiefly on egocentric spatial cues, while leaving performance on allocentric tasks intact. To test this prediction, two groups of rats were trained on two different egocentric memory tasks and two different allocentric memory tasks. Specifically, one group of rats was trained on an adjacent-arm (egocentric) and an 8-arm radial maze task (allocentric). A second group of rats was trained on a right-left discrimination (egocentric) and a place-learning task (allocentric). After training, both groups received bilateral lesions of the CN. Results showed that CN-lesioned animals were profoundly impaired on retention of the egocentric tasks. In sharp contrast to this, the same animals were not or were only transiently impaired or transiently affected on allocentric tasks. Sham-operated controls were either unimpaired or transiently affected on all tasks. These findings further support the idea that the CN plays a critical modulatory role in the processing of egocentric spatial and not allocentric spatial cues.  相似文献   

10.
We investigated whether the pretreatment with vitamins E (alpha-tocopherol) and C (ascorbic acid) would act on ovariectomy-induced memory deficits in Morris water maze tasks. Adult female Wistar rats were divided into three groups: (1) naive (control), (2) sham (submitted to surgery without removal of ovaries) and (3) ovariectomized. Thirty days after surgery, they were trained in the Morris water maze in order to verify ovariectomy effects both on reference and working memory tasks. Results show that ovariectomized rats presented impairment in spatial navigation in the acquisition phase, as well as in the time spent in target quadrant and in the latency to cross over the location of the platform in test session, when compared to naive and sham groups (controls), in the reference memory task. Ovariectomy did not affect performance in the working memory task. Confirming our hypothesis, ovariectomized rats pretreated for 30 days with vitamins E and C had those impairments prevented. We conclude that ovariectomy significantly impairs spatial reference learning/memory and that pretreatment with vitamins E and C prevents such effect. Assuming this experimental memory impairment might mimic, at least in part, the cognitive deficit sometimes present in the human condition of lack of reproductive hormones, our findings lend support to a novel therapeutic strategy, based on vitamins E and C, to cognitive impairments in post-menopausal women.  相似文献   

11.
In order to assess effects of global ischemia in tasks of spatial learning and working memory, male Wistar rats were subjected to four vessel occlusion (4 VO) for periods of 5, 10, and 20 min and compared with sham-operated controls over four test phases, from 6 to 54 weeks after surgery. Rats were assessed on acquisition in the water maze, a task that is sensitive to ischemic impairments, before testing in Skinner box and water maze working memory tasks, which both require the short-term storage of information, but make different demands on spatial information processing. Phases 1 and 3 assessed spatial learning in a standard water maze procedure (12 and 10 training days, 2 trials/day with a 10-min intertrial interval: ITI). Phase 2 involved training and testing in delayed non-matching-to-position task in the Skinner box, with delays of 2–10 s between the information and choice stages. Phase 4 examined working memory in a water maze delayed matching-to-position task with 4 trials/day, an ITI of 30 s, and a novel platform position on each day. Ischemic rats showed duration-related impairments in water maze acquisition and working memory, but not in the less spatially demanding Skinner box task. Since water maze acquisition deficits were seen both before and after testing in the Skinner box the lack of effect cannot be attributed to time or to prior training. Ischemic deficits were more marked in Phase 3 than in Phase 1 of acquisition, suggesting that impairment may be progressive. Histological assessment showed that cell loss was largely confined to the hippocampal CA1 field and was linearly related to duration of occlusion. At the maximal level of loss (5.7 mm before the interaural line) the 20-min group showed 90% loss, the 10-min group 60% loss, and the 5-min group, which did not differ from controls, less than 10% loss. Only the 20-min group showed significant damage beyond the CA1 field, ranging from 30–40% loss in the CA3 field to 5% loss in one striatal area. No cortical damage was seen. The extent of CA1 cell loss correlated modestly with water maze acquisition (Phase 3) and working memory scores, but not with trials to criterion in the Skinner box task. There were significant correlations between different measures both within and between water maze tasks, but not Skinner box tasks, suggesting that the two types of procedure engaged different cognitive processes. The results indicate that the intrahippocampal damage induced by 4 VO impaired tasks which required processing of allocentric spatial information, but did not impair the storage of limited spatial information in working memory.  相似文献   

12.
The Morris water maze is frequently used to evaluate the acquisition and retrieval of spatial memories. Few experiments, however, have investigated the effects of environmental cue saliency on the strength or persistence of such memories after a short vs. long post-acquisition interval. Using a Morris water maze, we therefore tested in rats the effect of the saliency of distal cues on the vividness of a recent (5 days) vs. remote (25 days) memory. Rats trained in a cue-enriched vs. a cue-impoverished context showed a better overall level of performance during acquisition. Furthermore, the probe trials revealed that the rats trained and tested in the cue-impoverished context (1) spent less time in the target quadrant at the 25-day delay, and (2) swam shorter distances in the target area, with fewer crossings at both 5- and 25-day delays, as compared to their counterparts trained and tested in the cue-enriched context. Thus, the memory trace formed in the cue-enriched context shows better resistance to time, suggesting an implication of cue saliency in the vividness of a spatial memory.  相似文献   

13.
Sprague-Dawley rats were used to study the effects of ibotenic acid lesions of the anterior (A.Th.) and the dorsomedial (MD) thalamic nuclei on learning and memory. Memory was assessed by employing a temporal alternation task in a straight alley with varying intertrial intervals. In addition, spatial orientation and response flexibility were evaluated on a radial maze and on a spatial reversal task (SSDR). The results indicated that MD rats required more trials to learn the temporal alternation task and exhibited impaired performance compared to A.Th. and control groups at the shortest delay (15 s). In contrast, compared to the control group, A.Th. subjects which required less trials to master the task and exhibited normal performance at the 15-s delay were impaired when the intertrial interval was increased to 45 s. Whatever the lesion, no impairments were found in the SSDR or the radial maze while only MD lesions were found to result in a night hyperactivity associated with greater food and water consumptions. These findings indicate that A.Th. and MD are differentially involved in learning and memory processes. It is suggested that the MD is mostly involved in registering new information while the A.Th. plays a role in the maintenance of information over time.  相似文献   

14.
Two experiments were conducted to compare the effects of fornix/fimbria and caudate-putamen lesions in Long–Evans hooded rats (Rattus norvegicus) trained on two water maze tasks that differed in the type of spatial localization required for optimum solution. In Experiment 1, the lesioned rats and surgical controls were trained on the standard place task in the water maze (Morris, 1981) and given two postacquisition tests (a platform removal probe and platform relocation test). In Experiment 2, rats with similar lesions and control rats were trained on a modified cue navigation task. Fornix/fimbria lesions impaired a late stage of place task acquisition but did not impair acquisition of the cue task. Caudate-putamen lesions resulted in a severe place acquisition impairment and a transient cue acquisition impairment, both of which were characterized by an initial tendency to swim near the wall of the pool. Post-hoc analyses of the direction and angles of departure from the start points suggested that rats with fornix/fimbria lesions used non-allocentric spatial strategies to solve the place task. These rats also demonstrated a significantly weakened spatial bias for the former training quadrant on the platform removal probe and reduced flexibility in navigating to a novel platform location on the platform relocation test. In contrast, rats with caudate-putamen lesions showed a significant spatial bias for the former training quadrant but failed to cross the exact location within the quadrant where the platform was formerly positioned. The results suggest that the hippocampus mediates the allocentric spatial component of the water maze place task while the dorsomedial striatum may play an important role in the acquisition of the procedural aspects of both place and cue versions of the task.  相似文献   

15.
The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo measures of ACh are correlated to learning and memory performance. In the present study, complete lesions of the ATN impaired performance on two measures of hippocampal-dependent learning and memory (spontaneous alternation and delayed alternation) and severely disrupted behaviorally evoked ACh efflux within the hippocampus of adult male rats. In contrast, incomplete ATN lesions did not impair spontaneous alternation performance but did impair delayed alternation performance while blunting hippocampal ACh efflux. Interestingly, ATN lesions of any size did not affect basal concentrations of ACh in the hippocampus. These results demonstrate that the ATN have the capacity to modulate behaviorally relevant neuronal transmission within the hippocampus.  相似文献   

16.
Effects of ketamine on tunnel maze and water maze performance in the rat   总被引:1,自引:0,他引:1  
The NMDA receptor, which has been implicated in memory formation, is noncompetitively blocked by ketamine. The present study examines the effect of ketamine (0, 3, 6, 12, and 25 mg/kg body wt; ip) on tunnel maze and water maze performance in Wistar rats. In the hexagonal tunnel maze (HTM) high doses of ketamine (12 and 25 mg/kg) decreased locomotor activity. Moreover, ketamine induced perimeter walking (6, 12, and 25 mg/kg) and attenuated exploratory efficiency (25 mg/kg). When the HTM was converted into a modified six-arm radial maze, ketamine impaired short-term but not long-term memory. In the Morris water maze, rats injected with ketamine (12 and 25 mg/kg) acquired a spatial navigation task more slowly than controls. When the escape platform was removed, the drug-treated rats did not preferentially search for it in the area where the platform had been during the acquisition phase. However, when the escape platform was visible, no differences in the performance of ketamine-treated and control rats could be found. In summary, ketamine seems to attenuate some but not all forms of learning in the tunnel maze and it impairs the acquisition of a spatial navigation task.  相似文献   

17.
This study examined how different components of working memory are involved in the acquisition of egocentric and allocentric survey knowledge by people with a good and poor sense of direction (SOD). We employed a dual‐task method and asked participants to learn routes from videos with verbal, visual, and spatial interference tasks and without any interference. Results showed that people with a good SOD encoded and integrated knowledge about landmarks and routes into egocentric survey knowledge in verbal and spatial working memory, which is then transformed into allocentric survey knowledge with the support of all three components, distances being processed in verbal and spatial working memory and directions in visual and spatial working memory. In contrast, people with a poor SOD relied on verbal working memory and lacked spatial processing, thus failing to acquire accurate survey knowledge. Based on the results, a possible model for explaining individual differences in spatial knowledge acquisition is proposed.  相似文献   

18.
Research on visuospatial memory has shown that egocentric (subject-to-object) and allocentric (object-to-object) reference frames are connected to categorical (non-metric) and coordinate (metric) spatial relations, and that motor resources are recruited especially when processing spatial information in peripersonal (within arm reaching) than extrapersonal (outside arm reaching) space. In order to perform our daily-life activities, these spatial components cooperate along a continuum from recognition-related (e.g., recognizing stimuli) to action-related (e.g., reaching stimuli) purposes. Therefore, it is possible that some types of spatial representations rely more on action/motor processes than others. Here, we explored the role of motor resources in the combinations of these visuospatial memory components. A motor interference paradigm was adopted in which participants had their arms bent behind their back or free during a spatial memory task. This task consisted in memorizing triads of objects and then verbally judging what was the object: (1) closest to/farthest from the participant (egocentric coordinate); (2) to the right/left of the participant (egocentric categorical); (3) closest to/farthest from a target object (allocentric coordinate); and (4) on the right/left of a target object (allocentric categorical). The triads appeared in participants' peripersonal (Experiment 1) or extrapersonal (Experiment 2) space. The results of Experiment 1 showed that motor interference selectively damaged egocentric-coordinate judgements but not the other spatial combinations. The results of Experiment 2 showed that the interference effect disappeared when the objects were in the extrapersonal space. A third follow-up study using a within-subject design confirmed the overall pattern of results. Our findings provide evidence that motor resources play an important role in the combination of coordinate spatial relations and egocentric representations in peripersonal space.  相似文献   

19.
隋南  匡培梓 《心理学报》1992,25(1):82-90
本研究的目的是探讨隔区或皮质顶叶在大鼠空间认知加工中的作用。实验观察到隔区或皮质顶叶损毁大鼠Morris迷宫学习或记忆作业成绩显著低于控制组,并发现隔区损毁大鼠主要采用与皮质顶叶或控制组不同的“非国类”搜索策略。搜索策略的差异提示:隔区和皮质顶叶在大鼠图认知加工系统中处于不同的功能层次,隔区具有更重要的作用。  相似文献   

20.
The parafascicular (PF) nucleus, a posterior component of the intralaminar nuclei of the thalamus, is considered to be an essential structure in the feedback systems of basal ganglia–thalamo-cortical circuits critically involved in cognitive processes. The specific role played by multimodal information encoded in PF neurons in learning and memory processes is still unclear. We conducted two experiments to investigate the role of the PF in the spontaneous object recognition (SOR) task. The behavioral effects of pretraining rats with bilateral lesions of PF with N-methyl-D-aspartate (NMDA) were compared to vehicle controls. In the first experiment, rats were tested on their ability to remember the association immediately after training trials and in the second experiment after a 24 h delay. Our findings provide evidence that PF lesions critically affect both SOR tests and support its role in that non-spatial form of relational memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号