共查询到20条相似文献,搜索用时 0 毫秒
1.
The Mares-Goldblatt semantics for quantified relevant logics have been developed for first-order extensions of R, and a range of other relevant logics and modal extensions thereof. All such work has taken place in the the ternary relation semantic framework, most famously developed by Sylvan (née Routley) and Meyer. In this paper, the Mares-Goldblatt technique for the interpretation of quantifiers is adapted to the more general neighbourhood semantic framework, developed by Sylvan, Meyer, and, more recently, Goble. This more algebraic semantics allows one to characterise a still wider range of logics, and provides the grist for some new results. To showcase this, we show, using some non-augmented models, that some quantified relevant logics are not conservatively extended by connectives the addition of which do conservatively extend the associated propositional logics, namely fusion and the dual implication. We close by proposing some further uses to which the neighbourhood Mares-Goldblatt semantics may be put. 相似文献
2.
In so-called Kripke-type models, each sentence is assigned either to true or to false at each possible world. In this setting, every possible world has the two-valued Boolean algebra as the set of truth values. Instead, we take a collection of algebras each of which is attached to a world as the set of truth values at the world, and obtain an extended semantics based on the traditional Kripke-type semantics, which we call here the algebraic Kripke semantics. We introduce algebraic Kripke sheaf semantics for super-intuitionistic and modal predicate logics, and discuss some basic properties. We can state the Gödel-McKinsey-Tarski translation theorem within this semantics. Further, we show new results on super-intuitionistic predicate logics. We prove that there exists a continuum of super-intuitionistic predicate logics each of which has both of the disjunction and existence properties and moreover the same propositional fragment as the intuitionistic logic. 相似文献
3.
The Routley-Meyer relational semantics for relevant logics is extended to give a sound and complete model theory for many
propositionally quantified relevant logics (and some non-relevant ones). This involves a restriction on which sets of worlds
are admissible as propositions, and an interpretation of propositional quantification that makes ∀ pA true when there is some true admissible proposition that entails all p-instantiations of A. It is also shown that without the admissibility qualification many of the systems considered are semantically incomplete,
including all those that are sub-logics of the quantified version of Anderson and Belnap’s system E of entailment, extended
by the mingle axiom and the Ackermann constant t. The incompleteness proof involves an algebraic semantics based on atomless complete Boolean algebras. 相似文献
4.
Studia Logica - Pietruszczak (Bull Sect Log 38(3/4):163–171, 2009. https://doi.org/10.12775/LLP.2009.013) proved that the normal logics $$\mathrm {K45}$$, $$\mathrm {KB4}$$ ($$=\mathrm... 相似文献
5.
Earlier algebraic semantics for Belnapian modal logics were defined in terms of twist-structures over modal algebras. In this paper we introduce the class of BK-lattices, show that this class coincides with the abstract closure of the class of twist-structures, and it forms a variety. We prove that the lattice of subvarieties of the variety of BK-lattices is dually isomorphic to the lattice of extensions of Belnapian modal logic BK. Finally, we describe invariants determining a twist-structure over a modal algebra. 相似文献
6.
This paper introduces the logic QLETF, a quantified extension of the logic of evidence and truth LETF, together with a corresponding sound and complete first-order non-deterministic valuation semantics. LETF is a paraconsistent and paracomplete sentential logic that extends the logic of first-degree entailment (FDE) with a classicality operator ∘ and a non-classicality operator ∙, dual to each other: while ∘A entails that A behaves classically, ∙A follows from A’s violating some classically valid inferences. The semantics of QLETF combines structures that interpret negated predicates in terms of anti-extensions with first-order non-deterministic valuations, and completeness is obtained through a generalization of Henkin’s method. By providing sound and complete semantics for first-order extensions of FDE, K3, and LP, we show how these tools, which we call here the method of anti-extensions + valuations, can be naturally applied to a number of non-classical logics. 相似文献
7.
Patrick Grim has presented arguments supporting the intuition that any notion of a totality of truths is incoherent. We suggest
a natural semantics for various logics of belief which reflect Grim’s intuition. The semantics is a topological semantics,
and we suggest that the condition can be interpreted to reflect Grim’s intuition. Beyond this, we present a natural canonical topological model for
K4 and KD4. 相似文献
8.
The results of this paper extend some of the intimate relations that are known to obtain between combinatory logic and certain
substructural logics to establish a general characterization theorem that applies to a very broad family of such logics. In
particular, I demonstrate that, for every combinator X, if LX is the logic that results by adding the set of types assigned to X (in an appropriate type assignment system, TAS) as axioms
to the basic positive relevant logic B∘ T, then LX is sound and complete with respect to the class of frames in the Routley-Meyer relational semantics for relevant and substructural
logics that meet a first-order condition that corresponds in a very direct way to the structure of the combinator X itself.
Presented by Rob Goldblatt 相似文献
9.
The notion of an algebraic semantics of a deductive system was proposed in [3], and a preliminary study was begun. The focus of [3] was the definition and investigation of algebraizable deductive systems, i.e., the deductive systems that possess an equivalent algebraic semantics. The present paper explores the more general property of possessing an algebraic semantics. While a deductive system can have at most one equivalent algebraic semantics, it may have numerous different algebraic semantics. All of these give rise to an algebraic completeness theorem for the deductive system, but their algebraic properties, unlike those of equivalent algebraic semantics, need not reflect the metalogical properties of the deductive system. Many deductive systems that don't have an equivalent algebraic semantics do possess an algebraic semantics; examples of these phenomena are provided. It is shown that all extensions of a deductive system that possesses an algebraic semantics themselves possess an algebraic semantics. Necessary conditions for the existence of an algebraic semantics are given, and an example of a protoalgebraic deductive system that does not have an algebraic semantics is provided. The mono-unary deductive systems possessing an algebraic semantics are characterized. Finally, weak conditions on a deductive system are formulated that guarantee the existence of an algebraic semantics. These conditions are used to show that various classes of non-algebraizable deductive systems of modal logic, relevance logic and linear logic do possess an algebraic semantics. 相似文献
11.
The contribution of this paper lies with providing a systematically specified and intuitive interpretation pattern and delineating a class of relational structures (frames) and models providing a natural interpretation of logical operators on an underlying propositional calculus of Positive Lattice Logic (the logic of bounded lattices) and subsequently proving a generic completeness theorem for the related class of logics, sometimes collectively referred to as (non-distributive) Generalized Galois Logics (GGL’s). 相似文献
13.
命题逻辑的一般弱框架择类语义是相干邻域语义的变形,其特点是:采用择类运算来刻画逻辑常项;语义运算与逻辑联结词之间有清晰的对应关系,可以从整体上处理一类逻辑,具有普适性。本文将这种语义用于一类B、C、K、W命题逻辑,包括相干逻辑R及其线性片段、直觉主义逻辑及其BCK片段等,并借助典范框架和典范赋值,证明了这些逻辑系统的可靠性和完全性。 相似文献
14.
We study filters in residuated structures that are associated with congruence relations (which we call -filters), and develop a semantical theory for general substructural logics based on the notion of primeness for those filters.
We first generalize Stone’s sheaf representation theorem to general substructural logics and then define the primeness of
-filters as being “points” (or stalkers) of the space, the spectrum, on which the representing sheaf is defined. Prime FL-filters
will turn out to coincide with truth sets under various well known semantics for certain substructural logics. We also investigate
which structural rules are needed to interpret each connective in terms of prime -filters in the same way as in Kripke or Routley-Meyer semantics. We may consider that the set of the structural rules that
each connective needs in this sense reflects the difficulty of giving the meaning of the connective. A surprising discovery
is that connectives , ⅋ of linear logic are linearly ordered in terms of the difficulty in this sense.
Presented by Wojciech Buszkowski 相似文献
16.
Proof-theoretic semantics is an inferentialist theory of meaning, usually developed in a multiple-assumption and single-conclusion framework. In that framework, this theory seems unable to justify classical logic, so some authors have proposed a multiple-conclusion reformulation to accomplish this goal. In the first part of this paper, the debate originated by this proposal is briefly exposed and used to defend the diverging opinion that proof-theoretic semantics should always endorse a single-assumption and single-conclusion framework. In order to adopt this approach some of its criteria of validity, especially separability, need to be weakened. This choice is evaluated and defended. The main argument in this direction is based on the circular dependences of meaning between multiple assumptions and conjunctions, and between multiple conclusions and disjunctions. In the second part of this paper, some systems that suit the new requirements are proposed for both intuitionistic and classical logic. A proof that they are valid, according to the weakened criteria, is sketched. 相似文献
17.
The purpose of the present paper is to provide a way of understanding systems of logic of essence by introducing a new semantic framework for them. Three central results are achieved: first, the now standard Fitting semantics for the propositional logic of evidence is adapted in order to provide a new, simplified semantics for the propositional logic of essence; secondly, we show how it is possible to construe the concept of necessary truth explicitly by using the concept of essential truth; finally, Fitting semantics is adapted in order to present a simplified semantics for the quantified logic of essence. 相似文献
19.
Journal of Philosophical Logic - This paper explores trivalent truth conditions for indicative conditionals, examining the “defective” truth table proposed by de Finetti (1936) and... 相似文献
|