首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the integration of bimanual rhythmic movements and posture in expert marching percussionists. Participants (N = 11) performed three rhythmic manual tasks [1:1, 2:3, and 2:3-F (2:3 rhythm played faster at a self-selected tempo)] in one of three postures: sitting, standing on one foot, and standing on two feet. Discrete relative phase, postural time-to-contact, and coherence analysis were used to analyze the performance of the manual task, postural control, and the integration between postural and manual performance. Across all three rhythms, discrete relative phase mean and variability results showed no effects of posture on rhythmic performance. The complexity of the manual task (1:1 vs. 2:3) had no effect on postural time-to-contact. However, increasing the tempo of the manual task (2:3 vs. 2:3-F) did result in a decreased postural time-to-contact in the two-footed posture. Coherence analysis revealed that the coupling between the postural and manual task significantly decreased as a function of postural difficulty (going from a two-footed to a one-footed posture) and rhythmic complexity (1:1 vs. 2:3). Taken together, these results demonstrate that expert marching percussionists systematically decouple postural and manual fluctuations in order to preserve the performance of the rhythmic movement task.  相似文献   

2.
There is increasing evidence that indicates a critical transition period for the maturation of postural control from the ages of 6–7 years. Some studies suggest that this transitional period may be explained by a change from a ballistic toward a sensory strategy, but the cause remains unknown. The purpose of this study was to investigate the influence of the transition period on dynamic postural control in a natural self-initiated leaning task under different sensory conditions. We evaluated the center of pressure (COP) displacement during maximum leaning in four directions (forward, backward, rightward, leftward) under three sensory conditions (eyes open, eyes closed and eyes closed standing on a foam). Three groups were tested: young children (4 years old), older children (8–10 years old) and adults (21–42 years old). The maximum COP excursion along the anteroposterior and mediolateral axes and the COP amplitude were analyzed. Young children showed smaller maximum anteroposterior and mediolateral COP excursion than other groups. Older children also exhibited a significantly smaller maximum excursion along the mediolateral direction but performed similar to adults along the anteroposterior direction. In a similar manner, the analysis of the COP amplitude did not indicate any differences between the groups along the anteroposterior axis. In contrast, along the mediolateral axis, the results showed developmental differences. Furthermore, the effect of sensory conditions was similar across the children's groups. Our results suggest an important plasticity period for the maturation of postural control mechanisms. Notably, our findings support the idea that the postural mechanisms controlling the anteroposterior axis reach maturity before the mechanisms involved in controlling the mediolateral axis.  相似文献   

3.
The present experiment varied cognitive complexity and sensory modality on postural control in young adults. Seventeen participants (23.71 ± 1.99 years) were instructed to stand feet together on a force platform while concurrently performing cognitive tasks of varying degrees of difficulty (easy, moderate and difficult). The cognitive tasks were presented both, auditorily and visually. Auditory tasks consisted of counting the occurrence of one or two letters and repeating a string of words. Visual tasks consisted of counting the occurrence of one or two numbers. With increasing cognitive demand, area of 95% confidence ellipse and ML sway variability was significantly reduced. The visual tasks reduced ML sway variability, whereas the auditory tasks increased COP irregularity. We suggest that these findings are primarily due to an increase in sensorimotor integration as a result of a shift in attentional focus.  相似文献   

4.
In the present experiment, we aimed to evaluate the interactive effect of performing a cognitive task simultaneously with a manual task requiring either high or low steadiness on APRs. Young volunteers performed the task of recovering upright balance following a mechanical perturbation provoked by unanticipatedly releasing a load pulling the participant’s body backwards. The postural task was performed while holding a cylinder steadily on a tray. One group performed that task under high (cylinder’ round side down) and another one under low (cylinder’ flat side down) manual steadiness constraint. Those tasks were evaluated in the conditions of performing concurrently a cognitive numeric subtraction task and under no cognitive task. Analysis showed that performance of the cognitive task led to increased body and tray displacement, associated with higher displacement at the hip and upper trunk, and lower magnitude of activation of the GM muscle in response to the perturbation. Conversely, high manual steadiness constraint led to reduced tray velocity in association with lower values of trunk displacement, and decreased rotation amplitude at the ankle and hip joints. We found no interactions between the effects of the cognitive and manual tasks on APRs, suggesting that they were processed in parallel in the generation of responses for balance recovery. Modulation of postural responses from the manual and cognitive tasks indicates participation of higher order neural structures in the generation of APRs, with postural responses being affected by multiple mental processes occurring in parallel.  相似文献   

5.
While growing evidence supports that dispositional mindfulness relates to psychological health and cognitive enhancement, to date there have been only a few attempts to characterize its neural underpinnings. In the present study, we aimed at exploring the electrophysiological (EEG) signature of dispositional mindfulness using quantitative and complexity measures of EEG during resting state and while performing a learning task. Hundred twenty participants were assessed with the Five Facet Mindfulness Questionnaire and underwent 5 min eyes-closed resting state and 5 min at task EEG recording. We hypothesized that high mindfulness individuals would show patterns of brain activity related to (a) lower involvement of the default mode network (DMN) at rest (reduced frontal gamma power) and (b) a state of ‘task readiness’ reflected in a more similar pattern from rest to task (reduced overall q-EEG power at rest but not at task), as compared to their low mindfulness counterparts. Dispositional mindfulness was significantly linked to reduced frontal gamma power at rest and lower overall power during rest but not at task. In addition, we found a trend towards higher entropy during task performance in mindful individuals, which has recently been reported during mindfulness meditation. Altogether, our results add to those from expert meditators to show that high (dispositional) mindfulness seems to have a specific electrophysiological pattern characteristic of less involvement of the DMN and mind-wandering processes.  相似文献   

6.
While epidemiologic data suggests that one in four older adults have difficulty performing stooping and crouching (SC) tasks, little is known about how aging affects SC performance. This study investigated differences between young and older adults in lower limb kinematics and underfoot center of pressure (COP) measures when performing a series of SC tasks. Twelve healthy younger and twelve healthy older participants performed object-retrieval tasks varying in: (1) initial lift height, (2) precision demand, and (3) duration. Whole-body center of mass (COM), underfoot COP, and hip and knee angular kinematics (maximum angles and velocities) were analyzed. Compared to younger, older participants moved slower when transitioning into and out of pick-up postures that were characterized by less hip and knee flexion. Older participants also showed a diminished ability to adapt to the changing postural demands of each set of tasks. This was especially evident during longer tasks, whereby older individuals avoided high knee flexion crouching postures that were commonly used by younger participants. Older adults also tended to exhibit faster and more frequent COP trajectory adjustments in the anterior–posterior direction. It is likely that limitations in physical characteristics such as lower limb strength and range of motion contributed to these differences.  相似文献   

7.
Human stability control is a complex process comprising contributions from several partly independent mechanisms such as coordination, feedback and feed-forward control, and adaptation. Acute alcohol intoxication impairs these functions and is recognized as a major contributor to fall traumas. The study aimed to investigate how alcohol intoxication at .06% and .10% blood alcohol concentration (BAC) affected the movement spans and control of posture alignment. The angular positions of the head, shoulder, hip and knees relative to the ankles were measured with a 3D motion analysis system in 25 healthy adults during standing with eyes open or closed and with or without vibratory balance perturbations.Alcohol intoxication significantly increased the movement spans of the head, shoulders, hip and knees in anteroposterior and lateral directions during quiet stance (p  .047 and p  .003) and balance perturbations (p < .001, both directions). Alcohol intoxication also decreased the ability to reduce the movement spans through adaptation in both anteroposterior (p  .011) and lateral (p  .004) directions. When sober and submitted to balance perturbations, the subjects aligned the head, shoulders, hip and knees more forward relative to the ankle joint (p < .001), hence adopting a more resilient posture increasing the safety margin for backward falls. Alcohol intoxication significantly delayed this forward realignment (p  .022). Alcohol intoxication did not cause any significant posture realignment in the lateral direction. Thus, initiation of adaptive posture realignments to alcohol or other disruptions might be context dependent and associated with reaching a certain level of stability threats.  相似文献   

8.
We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors.  相似文献   

9.
Infant sitting postural sway provides a window into motor development at an early age. The approximate entropy, a measure of randomness, in the postural sway was used to assess developmental delay, as occurs in cerebral palsy. Parameters used for the calculation of approximate entropy were investigated, and approximate entropy of postural sway in early sitting was found to be lower for infants with developmental delay in the anterior-posterior axis, but not in the medial-lateral axis. Spectral analysis showed higher frequency features in the postural sway of early sitting of infants with typical development, suggesting a faster control mechanism is active in infants with typical development as compared to infants with delayed development, perhaps activated by near-fall events.  相似文献   

10.
Previous postural studies of traumatic brain injury (TBI) patients have been limited to identifying deficits in static and quasi-dynamic postural control tasks such as weight shifting. In this study, we examined whether or not patients with TBI are able to scale adequately their postural adjustments during the performance of the dynamic task of bimanual load-lifting. An age matched group of healthy adults served as controls. We used the Tetrax posturography system that calculates a stability score (ST) based on fluctuations in vertical ground reaction forces, normalized for body weight. During quiet standing, the ST scores of the TBI group were significantly higher than the control group. Forward weight shift and percentage change in the vertical ground reaction forces (lift postural adjustment (LPA) and post-lift postural adjustment (PLPA) scores) linearly increased with increasing load weight in both healthy and TBI subjects. Group differences were found in the magnitude of forward weight shift but not in the relative increase of the LPA and PLPA scores during the lifting and post-lifting phases respectively. The forward weight shift of the TBI group was lower-than-normal and asymmetrical--there was significantly less forward weight shift on the more affected than on the less affected limb. In addition, a significant amplitude coupling was found between the scaling of the weight shift of the heel and forefoot of each limb. However, no coupling was found between the weight shift amplitudes of homologous parts of both limbs in the TBI group. The results showed that scaling based on prior experience was preserved in the TBI group, though some TBI subjects demonstrated absent scaling in either the more affected or less affected heel or forefoot. The differences between the normal and TBI groups in postural adjustments are not necessarily a sign of pathology; rather they may represent a deliberate choice of the central nervous system to counteract predictable disturbances.  相似文献   

11.
Postural strategies employed by hemiparetic stroke patients need to be better understood to guide rehabilitation. Of the two complementary mechanisms used to stabilize the standing posture, loading-unloading (LU) and pressure distribution (PD), it is hypothesized that the former would be predominantly used. To this aim, posturographic assessments, through a dual force-platform, were performed in 30 Hemiparetics tested 3 months after a unilateral stroke, and 30 matched healthy Controls. Original indices (from 0 to 1) were calculated to assess LU and PD contributions. The results show that along the mediolateral axis, the LU contribution was very high and similar in Hemiparetics and in Controls (0.80 ± 0.07 vs 0.76 ± 0.09 a.u; p > 0.05), indicating a predominant hip involvement. Along the anteroposterior axis, the PD contribution was very close to 1 in controls (0.96 ± 0.03 a.u.) indicating an exclusive ankle involvement. Despite a lower contribution in Hemiparetics (0.88 ± 0.11 a.u.; p < 0.01), the indices were surprisingly always above 0.5, meaning that ankle movements remain predominant for controlling postural sways along the anteroposterior axis in all patients even those with severe clinical deficits. However the PD contribution appeared larger in patients with light or moderate deficits of the sensitivity (r = −0.532; p < 0.01) or the motor command (r = −0.513; p < 0.01). These results indicate that postural stabilization of hemiparetic persons remains controlled by a PD mechanism along the anteroposterior axis, even in those combining poor distal motor command and deep sensory loss. This ankle control, piloted by the more-loaded non-paretic limb, would therefore be preferred to a hip control through lateral trunk motion. This should be considered when defining the objectives of the postural rehabilitation after stroke.  相似文献   

12.
Poor upper-limb coordination is a common difficulty for children with developmental coordination disorder (DCD). One hypothesis is that deviant muscle timing in proximal muscle groups results in poor postural and movement control. The relationship between muscle timing, arm motion and children's upper-limb coordination deficits has not previously been studied. The aim of this study was to investigate the relationship between functional difficulties with upper-limb motor skills and neuromuscular components of postural stability and coordination. Sixty-four children aged 8-10 years, 32 with DCD and 32 without DCD, participated in the study. The study investigated timing of muscle activity and resultant arm movement during a rapid, voluntary, goal-directed arm movement. Results showed that compared to children without DCD, children with DCD took significantly longer to respond to visual signals and longer to complete the goal-directed movement. Children with DCD also demonstrated altered activity in postural muscles. In particular, shoulder muscles, except for serratus anterior, and posterior trunk muscles demonstrated early activation. Further, anterior trunk muscles demonstrated delayed activation. In children with DCD, anticipatory function was not present in three of the four anterior trunk muscles. These differences support the hypothesis that in children with DCD, altered postural muscle activity may contribute to poor proximal stability and consequently poor arm movement control when performing goal-directed movement. These results have educational and functional implications for children at school and during activities of daily living and leisure activities and for clinicians assessing and treating children with DCD.  相似文献   

13.
The experiment was set-up to investigate the mechanisms of postural control by manipulating the base of support angle, using tilted platform wedges. The primary focus was to analyze the coupling of the motion of the center of mass (CoM) and the center of pressure (CoP), and the motions of the leg joints considered as individual components and synergies. The CoM-CoP coupling (both medio-lateral and anterioposterior) was preserved (∼0°) across all tilted platform angles (35°, 30°, 20°, 10° Down, 0° Flat and 10°, 20°, 25° Up), reflecting an in-phase pattern. There was high coherence (∼1) for CoM-CoP in the lower frequency range, whereas contrarily the hip, knee and ankle pair-wise couplings had values ranging between (0.4 and 0.7) across the different platform angle conditions. These findings are consistent with the view that the local pair-wise coupled variables of Hip, Knee and Ankle motions adaptively self-organized to preserve the CoM-CoP in-phase coupling at equilibrium over the baseline (0° Flat) platform condition and all other tilted platform angles. The findings support the hypothesis of CoM-CoP coupling acting as a collective variable that provides the structural integrity of the system for upright quiet standing across the platform angle conditions.  相似文献   

14.
A method is described for computing the centre of mass (COM) from empirical estimates of the centre of pressure (COP) obtained by means of a force platform. The method is based on a biomechanical model of sway movements in quiet standing, according to which the horizontal acceleration of the COM is approximately proportional to the COM–COP difference. The equations are solved by approximating the solution with best fitting spline functions. The implications for movement control are discussed.  相似文献   

15.
Recent findings indicate that complex cognitive functions are organized at a global level in the brain and rely on large-scale information processing requiring functional integration of multiple disparate neural assemblies. The critical question of the integration of distributed brain activities is whether the essential integrative role can be attributed to a specific structure in the brain or whether this ability is inherent to the cognitive network as a whole. The results of the present study show that mean values of the running correlation function in frontal-temporal EEG pairs with one electrode in the anterior cingulate cortex (ACC) are significantly higher than the same values in other frontal-temporal pairs. These findings indicate a particular role of the ACC in large-scale communication, which could reflect its unique integrative functions in cognitive processing.  相似文献   

16.
Lucchiari, C. & Pravettoni, G. (2010). Feedback related brain activity in a gambling task: A temporal analysis of EEG correlates. Scandinavian Journal of Psychology 51, 449–454. The pattern of neural correlates of feedback processing has been the subject of a number of studies, using both neuroimaging and electrophysiological recordings. A complex functional network was found to be activated after a choice in order to process a feedback and sustain an adaptive behavior. However, many aspects of this network are still unclear and further research is needed to better understand this process. We conducted an EEG study using a simple gambling task. Twenty three subjects participated to the study. We analyzed both EEG power spectrum and ERP components evoked by presentation of a feedback signal (money gain or loss) during a simple gambling task. Our data confirmed that a negative ERP component is present about 270 ms after feedback, particularly relevant following a choice with negative outcome. Furthermore, the theta and delta oscillatory activity seem to be correlated to a dynamic decision‐making process within specific cortical networks. In particular, theta activity showed a valence dependent development between 150 and 350 ms post‐feedback onset. Differently from previous studies (Cohen, Elger & Ranganath, 2007; Marco‐Pallares, Cucurell, Cunillera et al., 2008), we did not find any valence effect in beta range. However, our data are consistent with Christie and Tata (2009) , probably due to the nature of the gambling task used in both studies. In conclusion, our data, in line with some prior findings showed that the feedback related response is correlated to a complex pattern of cortical activation probably mediated by theta and delta activity.  相似文献   

17.
王立平  库逸轩 《心理科学》2008,31(6):1301-1303,1286
目的:探讨触觉-视觉交叉模式工作记忆的大脑神经活动机理.方法:训练11个正常受试者学习交叉模式工作记忆任务,利用Neuroscan EEG系统记录脑电活动,对脑电数据求源分析后,着重考察事件相关脑电成分所处的大脑空间位置.结果发现:在延时过程中的3个主要的脑电成分N40,LPC和LNC的神经活动源分别处于大脑的右侧顶叶,中间后顶叶和前额叶.这提示了交叉模式工作记忆中相继的三个神经认知功能:感知,触觉一视觉模式阃的信息交互,和工作记忆的维持.  相似文献   

18.
19.
ObjectiveTo study the influence of prolonged wearing of unstable shoes on standing postural control in prolonged standing workers.MethodsThe participants were divided into two groups: one wore unstable shoes while the other wore conventional shoes for 8 weeks. Stabilometry parameters related to centre of pressure (CoP), rambling (RM) and trembling (TR) as well as the total agonist/antagonist muscle activity, antagonist co-activation and reciprocal activation were evaluated during upright standing, before and after the 8 weeks period. In both moments, the subjects were evaluated wearing the unstable shoes and in barefoot.ResultsThe unstable shoe condition presented increased CoP displacement related variables and decreased co-activation command compared to barefoot before and after the intervention. The prolonged wearing of unstable shoes led to: (1) reduction of medial–lateral CoP root mean square and area; (2) decreased anteroposterior RM displacement; (3) increased anteroposterior RM mean velocity and mediolateral RM displacement; (4) decreased anteroposterior TR RMS; and (5) increased thigh antagonist co-activation in the unstable shoe condition.ConclusionThe unstable shoe condition is associated to a higher destabilising effect that leads to a selection of more efficient and accurate postural commands compared to barefoot. Prolonged wearing of unstable shoes provides increased effectiveness and performance of the postural control system, while wearing of unstable shoes in upright standing, that are reflected by changes in CoP related variables and by a reorganisation of postural control commands.  相似文献   

20.
Postural control is a highly automatized basic activity that requires limited attentional investments. These investments have been shown to increase from balancing experts to controls, and from controls to persons with impaired postural control. Such between-subject comparisons led to a proposed direct relation between the regularity of center-of-pressure (COP) fluctuations and the amount of attention invested in posture. This study aims to expand this relation to a within-subject comparison of conditions that differ in balance demands. Specifically, more regular COP fluctuations were expected for standing than sitting, as stimulus-response reaction-time studies showed that the required attentional demands are lower for sitting than standing. COP registrations were made for fifteen healthy young adults in seated and standing postures. COP regularity was quantified with sample entropy. As expected, COP fluctuations were found to be more regular for standing than sitting, as evidenced by significantly lower sample entropy values. These findings expand the relation between COP regularity and the amount of attention invested in posture to postural tasks that vary in balance demands. An assessment of COP regularity may thus not only be instrumental in the examination of attentional investment in posture in between-subject designs, but also for different postures in within-subjects designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号